Skip to main content
eScholarship
Open Access Publications from the University of California

Micromobility evolution and expansion: Understanding how docked and dockless bikesharing models complement and compete – A case study of San Francisco

Abstract

Shared micromobility – the shared use of bicycles, scooters, or other low-speed modes – is an innovative transportation strategy growing across the United States that includes various service models such as docked, dockless, and e-bike service models. This research focuses on understanding how docked bikesharing and dockless e-bikesharing models complement and compete with respect to user travel behaviors. To inform our analysis, we used two datasets from February 2018 of Ford GoBike (docked) and JUMP (dockless electric) bikesharing trips in San Francisco. We employed three methodological approaches: 1) travel behavior analysis, 2) discrete choice analysis with a destination choice model, and 3) geospatial suitability analysis based on the Spatial Temporal Economic Physiological Social (STEPS) to Transportation Equity framework. We found that dockless e-bikesharing trips were longer in distance and duration than docked trips. The average JUMP trip was about a third longer in distance and about twice as long in duration than the average GoBike trip. JUMP users were far less sensitive to estimated total elevation gain than were GoBike users, making trips with total elevation gain about three times larger than those of GoBike users, on average. The JUMP system achieved greater usage rates than GoBike, with 0.8 more daily trips per bike and 2.3 more miles traveled on each bike per day, on average. The destination choice model results suggest that JUMP users traveled to lower-density destinations, and GoBike users were largely traveling to dense employment areas. Bike rack density was a significant positive factor for JUMP users. The location of GoBike docking stations may attract users and/or be well-placed to the destination preferences of users. The STEPS-based bikeability analysis revealed opportunities for the expansion of both bikesharing systems in areas of the city where high-job density and bike facility availability converge with older resident populations.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View