Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Relations between Metabolic Homeostasis, Diet, and Peripheral Afferent Neuron Biology

Abstract

It is well established that food intake behavior and energy balance are regulated by crosstalk between peripheral organ systems and the central nervous system (CNS), for instance, through the actions of peripherally derived leptin on hindbrain and hypothalamic loci. Diet- or obesity-associated disturbances in metabolic and hormonal signals to the CNS can perturb metabolic homeostasis bodywide. Although interrelations between metabolic status and diet with CNS biology are well characterized, afferent networks (those sending information to the CNS from the periphery) have received far less attention. It is increasingly appreciated that afferent neurons in adipose tissue, the intestines, liver, and other tissues are important controllers of energy balance and feeding behavior. Disruption in their signaling may have consequences for cardiovascular, pancreatic, adipose, and immune function. This review discusses the diverse ways that afferent neurons participate in metabolic homeostasis and highlights how changes in their function associate with dysmetabolic states, such as obesity and insulin resistance.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View