Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Cell size and invasion in TGF-β–induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway

Abstract

Epithelial to mesenchymal transition (EMT) occurs during development and cancer progression to metastasis and results in enhanced cell motility and invasion. Transforming growth factor-beta (TGF-beta) induces EMT through Smads, leading to transcriptional regulation, and through non-Smad pathways. We observe that TGF-beta induces increased cell size and protein content during EMT. This translational regulation results from activation by TGF-beta of mammalian target of rapamycin (mTOR) through phosphatidylinositol 3-kinase and Akt, leading to the phosphorylation of S6 kinase 1 and eukaryotic initiation factor 4E-binding protein 1, which are direct regulators of translation initiation. Rapamycin, a specific inhibitor of mTOR complex 1, inhibits the TGF-beta-induced translation pathway and increase in cell size without affecting the EMT phenotype. Additionally, rapamycin decreases the migratory and invasive behavior of cells that accompany TGF-beta-induced EMT. The TGF-beta-induced translation pathway through mTOR complements the transcription pathway through Smads. Activation of mTOR by TGF-beta, which leads to increased cell size and invasion, adds to the role of TGF-beta-induced EMT in cancer progression and may represent a therapeutic opportunity for rapamycin analogues in cancer.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View