Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

When stress enhances memory encoding: The beneficial effects of changing context

Abstract

The effects of acute stress on memory encoding are complex, and we do not yet know all of the conditions that can determine whether stress at encoding improves or impairs memory. Recent work has found that changing contexts between encoding and stress can abolish the effects of post-encoding stress on memory, suggesting that context may play an important role in the effects of stress on memory. However, the role of context in the effects of stress on memory encoding is not yet known. We addressed this gap by examining the effects of context on the influence of acute stress on memory encoding. In a 2 × 2 experimental design, participants (N = 103) completed either a stressor (i.e., Socially Evaluated Cold Presser Test) or control task (i.e., warm water control) before completing a memory encoding task, which occurred in either in the same room as or a different room from the stressor or control task. Memory retrieval was tested for each participant within the context that they completed the encoding task. We found that, relative to nonstressed (i.e., control) participants, stressed participants who switched contexts prior to encoding showed better memory for both negative and neutral images. In contrast, when the stressor or control task occurred in the same room as memory encoding, stress had no beneficial effect on memory. These results highlight the importance of the ongoing context as a determinant of the effects of stress on memory encoding and present a challenge to current theoretical accounts of stress and memory.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View