
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Verification of business process specifications with arithmetic and data dependencies

Permalink
https://escholarship.org/uc/item/97v6r3xw

Author
Damaggio, Elio

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/97v6r3xw
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Verification of Business Process Specifications With Arithmetic and Data

Dependencies

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Elio Damaggio

Committee in charge:

Alin Deutsch, Co-Chair
Victor Vianu, Co-Chair
Richard Hull
Bertram Ludaescher
Yannis Papakonstantinou
Jeffrey Remmel

2011

Copyright

Elio Damaggio, 2011

All rights reserved.

The dissertation of Elio Damaggio is approved, and it is ac-

ceptable in quality and form for publication on microfilm and

electronically:

Co-Chair

Co-Chair

University of California, San Diego

2011

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vii

Acknowledgements . viii

Vita . ix

Abstract of the Dissertation . x

1 Introduction . 1
1.1 Other applications of verification . 3

1.1.1 Business rules . 3
1.1.2 Redundant attributes . 3
1.1.3 Verifying termination properties 3

1.2 Artifact Systems . 4
1.2.1 Services . 6
1.2.2 Semantics . 8

1.3 Temporal properties of artifact systems 8
1.4 Automatic Verification of Artifact Systems 10

1.4.1 Verification with arithmetic constraints and data dependencies . 11
1.4.2 Complexity . 14

1.5 Acyclic Workflows with Exceptions 14
1.6 Feasibility study . 15

I Theoretical Results 17

2 Model . 18
2.1 Framework . 18
2.2 Temporal properties of

artifact systems . 23
2.3 Feedback-free artifact systems . 26
2.4 Full E-Commerce Example . 36

3 Verification of
Feedback-free Systems . 48
3.1 Verification with only arithmetic . 48

3.1.1 Reduced inherited constraints 53
3.1.2 Complexity . 60

iv

3.1.3 Subclasses with Improved Upper Bounds 61
3.2 Introducing Dependencies . 64

3.2.1 Relevant Chase Properties . 65
3.2.2 Verification With Dependencies 66

4 Improved complexity upper bounds with key dependencies 71
4.1 Alternative technique for artifact systems with no dependencies and no

arithmetic . 72
4.1.1 Reduced form of inherited constraints 74
4.1.2 PSPACE verification . 76

4.2 Key dependencies . 78
4.2.1 Navigational complexity . 85
4.2.2 Relaxing feedback-freedom 87

4.3 (Re-)Introducing arithmetic . 87
4.3.1 Incrementally maintaining redm([η]) 89
4.3.2 Complexity . 92
4.3.3 Relaxing feedback freedom . 92

4.4 Constants . 94

5 Acyclic Workflows with Exceptions . 95
5.1 AWE syntactic model . 95

5.1.1 Basic activities . 96
5.1.2 Sub-workflow . 97
5.1.3 Splits . 97
5.1.4 Exceptions . 98

5.2 Semantics of AWEs . 99
5.2.1 Attributes . 99
5.2.2 Basic activities services . 99
5.2.3 Exception handling services 102
5.2.4 Semantics . 103

5.3 Expressive power comparison . 104

II Feasibility Study 107

6 Verifier Implementation . 108
6.1 Architecture . 108

6.1.1 Parser . 109
6.1.2 Pre-verification setup . 110
6.1.3 Verifier . 111

6.2 Verification algorithm . 112
6.2.1 Algorithm pseudocode . 113
6.2.2 Checking satisfiability . 114

v

6.3 Optimizations . 117
6.3.1 Inherited constraint hashing 117
6.3.2 Symbolic transition index . 118

7 Experimental evaluation . 122
7.1 Business process generation . 122

7.1.1 Complexity . 124
7.1.2 Statistics . 125

7.2 Temporal properties generation . 125
7.3 Execution enviroment . 126
7.4 Experiments . 126

7.4.1 Scaling w.r.t. business process complexity 127
7.4.2 Discussion . 127

8 Conclusion . 132
8.1 Related Work . 134

Bibliography . 138

vi

LIST OF FIGURES

Figure 2.1: Graphs Gψ and Eψ for the symbolic transition templates in Exam-
ple 2.3.1 . 30

Figure 2.2: Computation graph Gρ for Example 2.3.1 31
Figure 2.3: A computation graph for running example 44
Figure 2.4: Structure of computation graph from Figure 2.3 induced by connnected

components and their nested sub-components 44
Figure 2.5: Prefix of graph from Figure 2.4 relevant to the inherited constraint

at step 8 . 45

Figure 6.1: Architecture of the prototype implementation, with dependency re-
lation . 109

Figure 7.1: Example of a randomly generated AWE 129
Figure 7.2: Distribution of generated specifications w.r.t. Cyclomatic Complexity130
Figure 7.3: Distribution of generated specifications w.r.t. Control Flow Com-

plexity . 130
Figure 7.4: Average running time of verification algorithm w.r.t. Control Flow

Complexity . 131
Figure 7.5: Average running time of verification algorithm w.r.t. Cyclomatic

Complexity . 131

vii

ACKNOWLEDGEMENTS

Thanks to my advisors Alin Deutsch and Victor Vianu for guiding me and in-

spiring me during my work on this thesis. Special thanks to Rick Hull for making me

part of the effort on the ArtiFact model, and to all the extended team ArtiFact at IBM

Research. Finally, I want to thank the other co-authors of my papers: Dayou Zhou and

Roman Vaculin.

Also, I explicitly acknowledge Alin Deutsch and Victor Vianu that co-authored

Chapters 1, 2, 3 and 8 of this thesis; and Richard Hull who co-authored Chapter 1.

viii

VITA

2003 Laurea in Dottore in Ingegneria Informatica cum laude, Univer-
sità ‘La Sapienza’ di Roma, Italy

2003-2006 Senior Designer/Analyst at Value Team S.p.a., Italy

2007 Software Engineering Intern, Qualcomm, San Diego, CA

2008 Master of Science in Computer Science, University of California,
San Diego

2008 Research Intern at Microsoft Research, Redmond, WA

2009 Research Intern at IBM Watson Research Center, Hawthorne, NY

2010 Research Intern at IBM Watson Research Center, Hawthorne, NY

2011 Doctor of Philosophy in Computer Science, University of Cali-
fornia, San Diego

PUBLICATIONS

Damaggio, Hull, Vaculin, “On the equivalence of incremental and fixpoint semantics
for business entities with guard-stage-milestone lifecycles”, International Conference
on Business Process Management (BPM), 2011.

Damaggio, Deutsch, Hull, Vianu, “Automatic Verification of data-Centric Business Pro-
cess”, International Conference on Business Process Management (BPM), 2011.

Damaggio, Deutsch, Zhou, “Querying contract databases based on temporal behavior”,
International Conference on Management of Data (SIGMOD) 2011.

Damaggio, Deutsch, Vianu, “Artifact Systems with Data Dependencies and Arithmetic”,
International Conference on Database Theory (ICDT) 2011.

Hull, Damaggio, De Masellis, Fournier, Gupta, Heath, Hobson, Linehan, Maradugu,
Nigam, Sukaviriya, Vaculin, “Business entities with guard-stage-milestone lifecycles:
Managing entity interactions with conditions and events”, Distributed Event-Based Sys-
tems (DEBS) 2011.

Hull, Damaggio, Fournier, Gupta, Heath, Hobson, Linehan, Maradugu, Nigam,
Sukaviriya, Vaculin, “Introducing the Guard-Stage-Milestone Approach for Specifying
Business Entity Lifecycles”, Web Services and Formal Models (WSFM) 2010

Calvanese, Damaggio, De Giacomo, Lenzerini and Rosati, “Semantic Data Integration
in Peer-to-Peer Architectures”, International Workshop on Databases, Information Sys-
tems and Peer-to-Peer Computing, 2003.

ix

ABSTRACT OF THE DISSERTATION

Verification of Business Process Specifications With Arithmetic and Data

Dependencies

by

Elio Damaggio

Doctor of Philosophy in Computer Science

University of California, San Diego, 2011

Alin Deutsch, Co-Chair
Victor Vianu, Co-Chair

Recent years have witnessed the evolution of business process specification frame-

works from the traditional process-centric approach towards data-awareness. Process-

centric formalisms focus on control flow while under-specifying the underlying data and

its manipulations by the process tasks, often abstracting them away completely. In con-

trast, data-aware formalisms treat data as first-class citizens. The presence of data im-

plies an increase expressiveness of business process specification, including often data

dependencies and arithmetic. This thesis studies the verification problem of temporal

properties on data-aware business specifications with data dependencies and arithmetic.

In our context, data implies infinite-state systems, for which verification is noto-

x

riously difficult. Unlike previous work, we focus on verification that is a) automatic (i.e.

no expert user is required to help the process of verification as for theorem provers), b)

sound and complete, and c) does not abstract away the data portion, retaining the ability

to check the effects of data values on the behavior of the process (e.g. in a prototypical

e-commerce business process, abstracting the data would make it impossible to check if

the payment received for a product matches the price reported on the bill).

We identify a practically significant class of business process specifications with

data dependencies and arithmetic, for which verification of temporal properties is de-

cidable. Besides decidability, in the context of commonly occurring classes of specifi-

cations, we develop verification techniques with upper bounds palatable to implementa-

tion, e.g. PSPACE for a common class of specifications with unary keys and fixed-arity

databases with acyclic foreign keys.

We implement a verifier prototype based on our theoretical results and measure

the running times of the verification of temporal properties on a wide range of business

process specifications of different complexities. Our random generation is based on

patterns and frequencies found in real-world business process specifications and proper-

ties. The average running times measured range from seconds to minutes for the more

complex specifications.

We argue that the work in this thesis proves the feasibility of automatic verifica-

tion of temporal properties on highly expressive business process specifications, that is

both sound and complete.

xi

1 Introduction

Recent years have witnessed the evolution of business process specification

frameworks from the traditional process-centric approach towards data-awareness.

Process-centric formalisms focus on control flow while under-specifying the underlying

data and its manipulations by the process tasks, often abstracting them away completely.

In contrast, data-aware formalisms treat data as first-class citizens. A notable exponent

of this class is the business artifact model pioneered in [NC03], deployed by IBM in

commercial products and consulting services, and further studied in a line of follow-up

works [BCK+07, B+05, GBS07, GS07, BGH+07, LBW07, KLW08, KRG07, ea10].

Business artifacts (or simply “artifacts”) model key business-relevant entities, which are

updated by a set of services that implement business process tasks. A collection of

artifacts and services is called an artifact system. This modeling approach has been suc-

cessfully deployed in practice, yielding proven savings when performing business pro-

cess transformations [BCK+07]. In this thesis, we focus on automatic verification for

data-aware business process specifications at the theoretical and implementation level.

The verification problem [VW86] consists, given a model of a business process,

in establishing the validity of a temporal property, usually expressed in some flavor of

temporal logic. The verification problem not only arises naturally in applications, for

instance rule compliance (e.g. checking if a business process adheres to some company

or government standard), but it is a fundamental building block for many other useful

applications, as reported in Section 1.1. Traditional software verification techniques

can be applied to data-aware business process models; however, they suffer from one

of the following limitations. Theorem provers provide enough expressivity to encode

data-aware business process models, however, they might require an expert user to help

during the verification procedure. This kind of verification is sometimes called ‘inter-

1

2

active’. In this thesis we aim to provide an ‘automatic’ verification technique that does

not require the presence of an expert user to prove intermediate lemmas, whose con-

nection to the initial problem is often very hard to grasp. Another approach, based on

model checking techniques [VW86], is to abstract away the complexity deriving from

the presence of the data. This results in the lack of the ability to check the effects of

data values on the behavior of the process. For instance, in a prototypical e-commerce

business process, it would be impossible to check if the payment received for a product

matches the price reported on the bill. The approach we pursue in this thesis is then to

provide an automatic technique for data-aware verification of temporal properties.

In [DHPV09], data-aware verification for business processes is introduced.

These techniques, however, require conditions on specifications that are rarely satisfied

in real world applications, namely no arithmetic operations and no integrity constraints

on the external database. This would exclude any business process that computes an

order value summing product’s price and shipping cost, or refers to a database where

the table storing product information has a key constraint. Reasoning with arithmetic

operations and integrity constraints, even in isolation, leads quickly to undecidability. In

Chapter 2 of this thesis, we present a syntactic way to identify a class of business pro-

cess models with arithmetic operations and integrity constraints for which verification is

feasible [DDV11]. Supported by surveys [VDATHKB03] and [AM00], we also believe

that this restriction is expressive enough to cover a wide variety (if not most) of useful

business process specifications.

In addition to this theoretical result, we performed a feasibility study on our veri-

fication technique. This study includes a higher level model for business process models

that naturally relates to our syntactic restriction, and that form the basis of our experi-

ments; the implementation of a prototype verifier based on the theoretical results that we

presented; and a series of experiments aimed at validating the real-world performance

of data-aware verification. In the rest of this chapter, we report other applications of

verification and an extended summary of the main results of the thesis.

3

1.1 Other applications of verification

Various useful static analysis problems on data-aware business processes can be

reduced to verification of temporal properties. We mention some of these.

1.1.1 Business rules

The basic artifact model is extended in [BGH+07] with business rules, in or-

der to support service reuse and customization. Business rules are conditions that can

be super-imposed on the pre-conditions of existing services without changing their im-

plementation. They are useful in practice when services are provided by autonomous

third-parties, who typically strive for wide applicability and impose as unrestrictive pre-

conditions as possible. When such third-party services are incorporated into a specific

business process, this often requires more control over when services apply, in the form

of more restrictive pre-conditions. Such additional control may also be needed to en-

sure compliance with business regulations formulated by third parties, independently

of the specific application. Verification of properties in the presence of business rules

then becomes of interest and can be addressed by our techniques. A related issue is

the detection of redundant business rules, which can also be reduced to a verification

problem.

1.1.2 Redundant attributes

Another design simplification consists of redundant attribute removal, a problem

also raised in [BGH+07]. This is formulated as follows. We would like to test whether

there is a way to satisfy a property ϕ of runs without using one of the attributes. This

easily reduces to a verification problem as well.

1.1.3 Verifying termination properties

In some applications, one would like to verify properties relating to termination,

e.g. reachability of configurations in which no service can be applied. Note that one can

4

state, within an LTL-FO property, that a configuration of an artifact system is blocking.

This allows reducing termination questions to verification.

1.2 Artifact Systems

In our work, data-aware business processes are specified following the business

artifact paradigm [ea10]. For ease of presentation, we describe in this section a minimal-

istic variant of the artifact systems model fully described in Chapter 2. This variant is

adequate for illustrating our approach to verification in this Chapter. The presentation is

informal, relying mainly on a running example. The example, modeling an e-commerce

process, features several characteristics that drive the motivation for our work.

1. The system routinely queries an underlying database, for instance to look up

the price of a product and the shipping weight restrictions.

2. The validity checks and updates carried out by the services involve arithmetic

operations. For instance, to be valid, an order must satisfy such conditions as: (a) the

product weight must be within the selected shipment method’s limit, and (b) if the buyer

uses a coupon, the sum of product price and shipping cost must exceed the coupon’s

minimum purchase limit.

3. Finally, the correctness of the business process relies on database integrity

constraints. For instance, the system must check that a selected triple of product, ship-

ment type and coupon are globally compatible. This check is implemented by several

local tests, each running at a distinct instant of the interaction, as user selections become

available. Each local test accesses distinct tables in the database, yet they globally refer

to the same product, due to the keys and foreign keys satisfied by these tables.

The example models an e-commerce business process in which the customer

chooses a product and a shipment method and applies various kinds of coupons to the

order. There are two kinds of coupons: discount coupons subtract their value from the

total (e.g. a $50 coupon) and free-shipment coupons subtract the shipping costs from

the total. The order is filled in a sequential manner (first pick the product, then the

shipment, then claim a coupon), as is customary on e-commerce web-sites. After the

order is filled, the system awaits for the customer to submit a payment. If the payment

5

matches the amount owed, the system proceeds to shipping the product.

As mentioned earlier, an artifact is an evolving record of values. The values

are referred to by variables (sometimes called attributes). In general, an artifact system

consists of several artifacts, evolving under the action of services, specified by pre- and

post-conditions. In the example, we use a single artifact with the following variables

status,prod_id,ship_type,coupon,amount_owed,amount_paid,amount_refunded.

The status variable tracks the status of the order and can take the following values:

“edit_product”, “edit_ship”, “edit_coupon”, “processing”, “received_payment”,

“shipping”, “shipped”, “canceling”, “canceled”.

Artifact variables ship_type and coupon record the customer’s selection, received as

an external input. amount_paid is also an external input (from the customer, possi-

bly indirectly via a credit card service). Variable amount_owed is set by the system

using arithmetic operations that sum up product price and shipment cost, subtracting

the coupon value. Variable amount_refunded is set by the system in case a refund is

activated.

The database includes the following tables, where underlined attributes de-

note keys. Recall that a key is an attribute that uniquely identifies each tuple in a relation.

PRODUCTS(id,price,availability,weight),

COUPONS(code,type,value,min_value,free_shiptype),

SHIPPING(type,cost,max_weight),

OFFERS(prod_id,discounted_price,active).

The database also satisfies the following foreign keys:

COUPONS[free_shiptype]⊆ SHIPPING[type] and

OFFERS[prod_id]⊆ PRODUCTS[id].

6

Thus, the first dependency says that each free_shiptype value in the COUPONS

relation is also a type value in the SHIPPING relation. The second inclusion depen-

dency states that every prod_id value in the OFFERS is the actual i of a product in the

PRODUCTS relation

The starting configuration of every artifact system is constrained by an initializa-

tion condition, which here states that status initialized to “edit_prod”, and all other

variables to “undefined”. By convention, we model undefined variables using the re-

served constant λ .

1.2.1 Services

Recall that artifacts evolve under the action of services. Each service is specified

by a pre-condition π and a postcondition ψ , both existential first-order (∃FO) sentences.

The pre-condition refers to the current values of the artifact variables and the database.

The post-condition ψ refers simultaneously to the current and next artifact values, as

well as the database. In addition, both π and ψ may use arithmetic constraints on the

variables, limited to linear inequalities over the rationals.

The following services model a few of the business process tasks of the example.

Throughout the example, we use primed artifact variables x′ to refer to the next value of

variable x.

choose_product: The customer chooses a product.

π : status= “edit_prod”

ψ : ∃p,a,w(PRODUCTS(prod_id′, p,a,w)∧a > 0)∧status′ = ”edit_shiptype”

choose_shiptype: The customer chooses a shipping option.

π : status= “edit_ship”

ψ : ∃c, l, p,a,w(SHIPPING(ship_type′,c, l)∧PRODUCTS(prod_id, p,a,w)∧ l > w)∧

status′ = “edit_coupon”∧prod_id′ = prod_id

apply_coupon: The customer optionally inputs a coupon number.

π : status= “edit_coupon”

ψ : (coupon′ = λ ∧∃p,a,w,c, l(PRODUCTS(prod_id, p,a,w)∧

SHIPPING(ship_type,c, l)∧amount_owed′ = p+ c)∧status′ = “processing”

7

∧prod_id′ = prod_id∧ship_type′ = ship_type)∨

(∃t,v,m,s, p,a,w,c, l(COUPONS(coupon′, t,v,m,s)∧

PRODUCTS(prod_id, p,a,w)∧SHIPPING(ship_type,c, l)∧ p+ c≥ m∧

(t = “free_shipping”→ (s = ship_type∧amount_owed′ = p))∧

(t = “discount”→ amount_owed′ = p+ c− v))

∧status′ = “processing”∧prod_id′ = prod_id∧ship_type′ = ship_type)

Notice that the pre-conditions of the services check the value of the status

variable. For instance, according to choose_product, the customer can only input her

product choice while the order is in “edit_prod” status.

Also notice that the post-conditions constrain the next values of the artifact vari-

ables (denoted by a prime). For instance, according to choose_product, once a product

has been picked, the next value of the status variable is “edit_shiptype”, which will at

a subsequent step enable the choose_shiptype service (by satisfying its pre-condition).

Similarly, once the shipment type is chosen (as modeled by service choose_shiptype),

the new status is “edit_coupon”, which enables the apply_coupon service. The inter-

play of pre- and post-conditions achieves a sequential filling of the order, starting from

the choice of product and ending with the claim of a coupon.

A post-condition may refer to both the current and next values of the artifact

variables. For instance, in service choose_shiptype, the fact that only the shipment type

is picked while the product remains unchanged, is modeled by preserving the product

id: the next and current values of the corresponding artifact variable are set equal.

Pre- and post-conditions may query the database. For instance, in service

choose_product, the post-condition ensures that the product id chosen by the customer

is that of an available product (by checking that it appears in a PRODUCTS tuple, whose

availability attribute is positive).

Finally, notice the arithmetic computation in the post-conditions. For instance,

in service apply_coupon, the sum of the product price p and shipment cost c (looked

up in the database) is adjusted with the coupon value (notice the distinct treatment of

the two coupon types) and stored in the amount_owed artifact variable.

Observe that the first post-condition disjunct models the case when the customer

inputs no coupon number (the next value coupon′ is set to undefined), in which case a

8

different owed amount is computed, namely the sum of price and shipping cost.

1.2.2 Semantics

The semantics of an artifact system A consists of its runs. Given a database

D, a run of A is an infinite sequence {ρi}≥0 of artifact records such that ρ0 and D

satisfy the initial condition of the system, and for each i ≥ 0 there is a service S of the

system such that ρi and D satisfy the pre-condition of S and ρi, ρi+1 and D satisfy its

post-condition. For uniformity, blocking prefixes of runs are extended to infinite runs

by repeating forever their last record.

The business process in the example exhibits a flexibility that, while desirable

in practice for a postive customer experience, yields intricate runs, all of which need

to be considered in verification. For instance, at any time before submitting a valid

payment, the customer may edit the order (select a different product, shipping method,

or change/add a coupon) an unbounded number of times. Likewise, the customer may

cancel an order for a refund even after submitting a valid payment.

1.3 Temporal properties of artifact systems

The properties we are interested in verifying are expressed in a first-order exten-

sion of linear temporal logic called LTL-FO. This is a powerful language, fit to capture

a wide variety of business policies implmented by a business process. For instance, in

our running example it allows us to express such desiderata as:

If a correct payment is submitted then at some time in the future either the
product is shipped or the customer is refunded the correct amount.

A free shipment coupon is accepted only if the available quantity of the
product is greater than zero, the weight of the product is in the limit allowed
by the shipment method, and the sum of price and shipping cost exceeds the
coupon’s minimum purchase value.

In order to specify temporal properties we use an extension of LTL (linear-time

temporal logic). Recall that LTL is propositional logic augmented with temporal opera-

tors such as G (always), F (eventually), X (next) and U (until) (e.g., see [Pnu77]). For

9

example, Gp says that p holds at all times in the run, Fp says that p will eventually

hold, and G(p→ Fq) says that whenever p holds, q must hold sometime in the future.

The extension of LTL that we use, called1 LTL-FO, is obtained from LTL by replacing

propositions with quantifier-free FO statements about particular artifact records in the

run. The statements use the artifact variables and may use additional global variables,

shared by different statements and allowing to refer to values in different records. The

global variables are universally quantified over the entire property.

For example, suppose we wish to specify the property that if a correct payment

is submitted then at some time in the future either the product is shipped or the customer

is refunded the correct amount. The property is of the form G(p→ Fq), where p says

that a correct payment is submitted and q states that either the product is shipped or the

customer is refunded the correct amount. Moreover, if the customer is refunded, the

amount of the correct payment (given in p) should be the same as the amount of the re-

fund (given in q). This requires using a global variable x in both p and q. More precisely,

p is interpreted as the formula amount_paid= x∧amount_paid= amount_owed and

q as status= ”shipped”∨amount_refunded= x. This yields the LTL-FO property

(ϕ1) ∀xG((amount_paid= x∧amount_paid= amount_owed)

→ F(status= ”shipped”∨amount_refunded= x))

Note that, as one would expect, the global variable x is universally quantified at

the end.

We say that an artifact system A satisfies an LTL-FO sentence ϕ if all runs of

the artifact system satisfy ϕ for all values of the global variables. Note that the database

is fixed for each run, but may be different for different runs.

We now show a second property ϕ2 for the running example, expressed by the

LTL-FO formula

(ϕ2) ∀ v,m,s, p,a,w,c, l(G(prod_id 6= λ ∧ship_type 6= λ∧

COUPONS(coupon,”free_ship”,v,m,s))∧PRODUCTS(prod_id, p,a,w)∧

SHIPPING(ship_type,c, l)→ a > 0
︸ ︷︷ ︸

(i)

∧w≤ l
︸ ︷︷ ︸

(ii)

∧ p+ c≥ m
︸ ︷︷ ︸

(iii)

)

1The variant of LTL-FO used here differs from previous ones in that the FO formulas interpreting
propositions are quantifier-free. By slight abuse we use here the same name.

10

Property ϕ2 verifies the consistency of orders that use coupons for free shipping.

The premise of the implication lists the conditions for a completely specified order that

uses such coupons. The conclusion checks the following business rules (i) available

quantity of the product is greater than zero, (ii) the weight of the product is in the limit

allowed by the shipment method, and (iii) the total order value satifies the minimum for

the application of the coupon.

Note that this property holds only due to the integrity constraints on the schema.

Indeed, observe that (i) is guaranteed by the post-condition of service choose_product,

(ii) by choose_shiptype, and (iii) by apply_coupon. In the post-conditions, the checks

are perfomed by looking up in the database the weight/price/cost/limit attributes asso-

ciated to the customer’s selection of product id and shipment type (stored in artifact

variables). The property performs the same lookup in the database, and it is guaran-

teed to retrieve the same tuples only because product id and shipment type are keys for

PRODUCTS, respectively SHIPPING. The verifier must take these key declarations into

account, to avoid generating a spurious counter-example in which the tuples retrieved

by the service post-conditions are distinct from those retrieved by the property, despite

agreeing on product id and shipment type.

1.4 Automatic Verification of Artifact Systems

Let us consider first artifact systems and properties without arithmetic con-

straints or data dependencies. This case was studied in [DHPV09], with a slightly richer

model in which artifacts can carry some limited relational state information (however,

here we stick for simplicity to the earlier minimalistic model). The main result is the

following.

Theorem 1.4.1. It is decidable, given an artifact system A with no data dependencies

or arithmetic constraints, and an LTL-FO property ϕ with no arithmetic constraints,

whether A satisfies ϕ .

The complexity of verification is PSPACE-complete for fixed-arity database and

artifacts, and EXPSPACE otherwise. This is the best one can expect, given that even very

simple static analysis problems for finite-state systems are already PSPACE-complete.

11

The main idea behind the verification algorithm is to explore the space of runs of

the artifact system using symbolic runs rather than actual runs. This is based on the fact

that the relevant information at each instant is the pattern of connections in the database

between attribute values of the current and successor artifact records in the run, referred

to as their isomorphism type. Indeed, the sequence of isomorphism types in a run can be

generated symbolically and is enough to determine satisfaction of the property. Since

each isomorphism type can be represented by a polynomial number of tuples (for fixed

arity), this yields a PSPACE verification algorithm.

It turns out that the verification algorithm can be extended to specifications and

properties that use a total order on the data domain, which is useful in many cases.

This however complicates the algorithm considerably, since the order imposes global

constraints that are not captured by the local isomorphism types. The algorithm was

first extended in [DHPV09] for the case of a dense countable order with no end-points.

This was later generalized to an arbitrary total order by Segoufin and Torunczyk [LS11]

using automata-theoretic techniques. In both cases, the worst-case complexity remains

PSPACE.

In Chapter 4, we provide an alternative way to perform verification on artifact

systems with no dependencies and no arithmetic (albeit with no ordering), that is again in

PSPACE but uses techniques similar to the ones used to verify systems with dependencies

and arithmetic.

1.4.1 Verification with arithmetic constraints and data dependen-

cies

Theorem 1.4.1 fails even in the presence of simple data dependencies or arith-

metic. Specifically, as shown in [DHPV09, DDV11] and in Chapter ??, verification

becomes undecidable as soon as the database is equipped with at least one key depen-

dency, or if the specification of the artifact system uses simple arithmetic constraints

allowing to increment and decrement by one the value of some atributes. Therefore, a

restriction is needed to achieve decidability. We discuss this next.

To gain some intuition, consider the undecidability of verification for artifact

systems with increments and decrements. The proof of undecidability is based on the

12

ability of such systems to simulate counter machines, for which the problem of state

reachability is known to be undecidable [Min67]. To simulate counter machines, an

artifact system uses an attribute for each counter. A service performs an increment (or

decrement) operations by “feeding back” the incremented (or decremented) value into

the next occurrence of the corresponding attribute. To simulate counters, this must be

done un unbounded number of times. To prevent such computations, the restriction

imposed in Chapter 2 is designed to limit the data flow between occurrences of the

same artifact attribute at different times in runs of the system that satisfy the desired

property. As a first cut, a possible restriction would prevent any data flow path between

unequal occurrences of the same artifact attribute. Let us call this restriction acyclicity.

While acyclicity would achieve the goal of rendering verification decidable, it is too

strong for many practical situations. In our running example, a customer can choose a

shipping type and coupon and repeatedly change her mind and start over. Such repeated

performance of a task is useful in many scenarios, but would be prohibited by acyclicity

of the data flow. To this end, we define in Chapter 2 a more permissive restriction called

feedback freedom. The formal definition considers, for each run, a graph capturing

the data flow among variables, and imposes a restriction on the graph. Intuitively, paths

among different occurrences of the same attribute are permitted, but only as long as each

value of the attribute is independent on its previous values. This is ensured by a syntactic

condition that takes into account both the artifact system and the property to be verified.

We omit here the rather technical details. It is shown in Chapter 2 that feedback freedom

of an artifact system together with an LTL-FO property can be checked in PSPACE by

reduction to a test of emptiness of a two-way alternating finite-state automaton.

There is evidence ([VDATHKB03, AM00]) that the feedback freedom condition

is permissive enough to capture a wide class of applications of practical interest. Indeed,

this is confirmed by numerous examples of practical business processes modeled as ar-

tifact systems, encountered in our collaboration with IBM. Many of these, including

typical e-commerce applications, satisfy the feedback freedom condition. The under-

lying reason seems to be that business processes are usually not meant to “chain” an

unbounded number of tasks together, with the output of each task being input to the

next. Instead, the unboundedness is usually confined to two forms, both consistent with

13

feeback-freedom:

1. Allowing a certain task to undo and retry an unbounded number of times,

with each retrial independent of previous ones, and depending only on a context that

remains unchanged throughout the retrial phase. A typical example is repeatedly pro-

viding credit card information until the payment goes through, while the order details

remain unchanged. Another is the situation in which an order is filled according to se-

quentially ordered phases, where the customer can repeatedly change her mind within

each phase while the input provided in the previous phases remains unchanged (e.g.

changing her mind about the shipment type for the same product, the rental car reserva-

tion for the same flight, etc.)

2. Allowing a task to batch-process an unbounded collection of inputs, each pro-

cessed independently, within an otherwise unchanged context (e.g. sending invitations

to an event to all attendants on the list, for the same event details).

Feedback freedom turns out to ensure decidability of verification in the presence

of arithmetic constraints, and also under a large class of data dependencies including

key and foreign key constraints on the database. Thus, we prove in Chapter ??:

Theorem 1.4.2. It is decidable, given an artifact system A whose database satisfies a

set of key and foreign key constraints, and an LTL-FO property ϕ such that (A ,ϕ) is

feedback free, whether every run of A on a valid database satisfies ϕ .

The intuition behind decidability is the following. Recall the verification algo-

rithm of Theorem 1.4.1. Because of the data dependencies and arithmetic constraints,

the isomorphism types of symbolic runs are no longer sufficient, because every artifact

record in a run is constrained by the entire history leading up to it. This can be specified

as an ∃FO formula using one quantified variable for each artifact attribute occurring in

the history, referred to as the inherited constraint of the record. The key observation

is that due to feedback freedom, the inherited constraint can be rewritten into an ∃FO

formula with quantifier rank2 bounded by k2, where k is the number of attributes of the

artifact. This implies that there are only finitely many non-equivalent inherited con-

straints. This allows to use again a symbolic run approach to verification, by replacing

2The quantifier rank of a formula is the maximum number of quantifiers occurring along a path from
root to leaf in the syntax tree of the formula, see [Lib04].

14

isomorphism types with inherited constraints.

1.4.2 Complexity

Unfortunately, there is a price to pay for the extension to data dependencies and

arithmetic in terms of complexity. Recall that verification without arithmetic constraints

or data dependencies can be done in PSPACE. In contrast, the worst-case complexity of

the extended verification algorithm is very high – hyperexponential in k2 (i.e. a tower

of exponentials of height k2). The complexity is more palatable when the clusters of

artifact attributes that are mutually dependent are bounded by a small w. In this case,

the complexity is hyperexponential in w2. If the more stringent acyclicity restriction

holds, the complexity drops to 2-EXPTIME in k.

In Chapter 4, we develop a series of restricted technique based on the concept

of inherited constraint, in order to improve the worst-case complexity of the verifica-

tion problem. A first improvement comes from limiting the data dependencies to just

unary keys and considering no arithmetic. This results in an EXPSPACE upper bound

w.r.t. the number of attributes, given a fixed-arity database. A nice result is also that this

techniques allows us to relax the feedback freedom definition, in order to accept more

specifications. Also, we identify a class of very common business process specification,

defined by how joins are performed. Intuitively, if the joins happen only between at-

tributes in a foreign key constraint, and foreign keys are acyclic in the database schema,

the verification worst-case complexity becomes PSPACE, given a fixed-arity database.

Even adding arithmetic, we are then able to extend the previous technique obtaining a

worst-case complexity that is hyperexponential only in the maximum size of clusters of

attributes that are mutually dependent with arithmetic operations. Again, we relax the

feedback-freedom definition by considering separately database predicates and arith-

metic operations.

1.5 Acyclic Workflows with Exceptions

In Chapter 5 we introduce a high-level business process model that relates

closely to feedback-freedom. Also, the structure of these processes is based on pat-

15

terns found in the literature [VDATHKB03, RvdAtH, RHE05, RtHEvdA05] and are

aimed to model realistic business processes. We call this model Acyclic Workflows with

Exceptions (AWE) and it is fundamental in the developments of our feasibility tests.

We specify the semantics of AWEs using our lower-level artifact model developed in

Chapter 2.

Then, we compare the expressiveness of AWEs, our lower-level artifact model,

and feedback-free systems. The important result of this section is that a natural re-

striction on AWEs implies feedback-freedom. This further strengthens the link between

how business processes are specified (patterns) and feedback-freedom, and provides us

a higher-level model to use in our feasibility study.

1.6 Feasibility study

We conducted a feasibility study of the verification techniques presented in

Chapter 4. We implemented software prototype, described in detail in Chapter 6. Then,

we perfomed a series experiments in order to establish the applicability of the techniques

to realistic business processes. First, we created a random generator of business pro-

cesses and temporal properties. This is based on patterns and frequencies extracted from

real-world business process specifications [TLR07] and temporal properties [DAC98].

The complexity of the generated specifications is analyzed using the cyclomatic

complexity metric [McC76], developed for traditional sequential programs but for which

quality guidelines are available, and control flow complexity [Car05], developed specif-

ically for business processes. These complexity measures are fundamental in gauging

the effectiveness of our technique. Indeed, there are quality guidelines [McC76] that

impose a certain maximum size of a business process. Any specification larger than a

certain threshold is supposed to be broken up to retain efficiency, understandability and

maitainability. Our technique has to be applicable to business processes more complex

than the current thresholds.

In Chapter 7, we analyzed the running times of our verifier on the generated

specifications, and we had running times varying from seconds to minutes for specifi-

cations significantly larger than the current threshold. For instance, a cyclomatic com-

16

plexity index of 50 is considered ‘untestable’, and our prototype verifies properties with

complexity up to 80 in minutes.

Acknowledgement

Richard Hull, Alin Deutsch and Victor Vianu co-authored part of this chapter.

Part I

Theoretical Results

17

2 Model

2.1 Framework

The arithmetic constraints considered here are over domain Q, the rational num-

bers. While databases could use non-numeric data, we assume for uniformity, and with-

out loss of generality, that all structures are over Q. We denote by C an infinite set of

relation symbols, each of which has a fixed interpretation as the set of solutions of a

finite set of linear inequalities with integer coefficients. By slight abuse, we sometimes

use the same notation for a relation symbol in C and its fixed interpretation.

Definition 2.1.1. An artifact schema is a a tuple A = 〈x̄,DB〉 where x̄ is a finite set of

artifact variables and DB is a relational schema.

For each x̄, we also define a set of variables x̄′ = {x′ | x ∈ x̄} where each x′ is a

distinct new variable.

Definition 2.1.2. An instance of an artifact schema A = 〈x̄,DB〉 is a tuple A = 〈ν ,D〉

where ν is a valuation of x̄ into Q and D is a finite instance of DB whose domain is

included in Q.

We denote by ∃FO the first-order formulas whose prenex form uses only exis-

tential quantification, and by CQ¬ the formulas built from literals (positive and negated

atoms over DB∪C ∪{=}) using only conjunction and existential quantification.

Definition 2.1.3. A service over an artifact schema A is a pair σ = 〈π,ψ〉 where:

• π(x̄), called pre-condition, is an ∃FO formula using relational symbols in DB∪

C , with free variables x̄;

18

19

• ψ(x̄, x̄′), called post-condition, is an ∃FO formula on the relational symbols in

DB∪C , with free variables x̄∪ x̄′.

Definition 2.1.4. An artifact system is a triple Γ = 〈A ,Σ,Π〉, where A is an artifact

schema, Σ is a non-empty set of services over A , and Π is a pre-condition (as above, a

∃FO formula over DB∪C , with free variables x̄).

Definition 2.1.5. Let σ = 〈π,ψ〉 be a service over an artifact schema A = 〈x̄,DB〉,

and let D be an instance over DB. Let ν ,ν ′ be valuations of x̄. We say that ν ′ is a

possible successor of ν w.r.t. σ and D (denoted A
σ
−→ A′ when D is understood) iff:

• D∪C |= π(ν), and

• D∪C |= ψ(ν ,ν ′).

Definition 2.1.6. Let Γ = 〈A ,Σ,Π〉 be an artifact system, where A = 〈x̄,DB〉. A run

of Γ on database instance D over DB is an infinite sequence ρ = {ρi}i≥0 of valuations

of x̄ so that D∪C |= Π(ρ0) and for each i≥ 0, ρi
σ
−→ ρi+1 for some σ ∈ Σ.

We denote by RunsD(Γ) the set of all runs of Γ on database instance D.

Remark 2.1.7. In [DHPV09], artifacts are equipped with state relations in addition to

the database and artifact variables. However, under the guarded restriction, the state

relations are essentially limited to be finite-state. Note that finite state control can be

simulated with artifact variables, by having one variable hold the current state. For

instance, this role is played by variable status in the example below. We therefore omit

explicit states in the present model.

We next illustrate the expressive power of the artifact system framework by mod-

eling the running e-commerce example. Due to limited space, we only list some of the

services involved.

Example 2.1.8 The running example models an e-commerce business process in which

the customer chooses a product and a shipment method and applies various kinds of

coupons to the order. There are two kinds of coupons: discount coupons subtract their

value from the total (e.g. a $50 coupon) and free-shipment coupons subtract the shipping

20

costs from the total. The order is filled in a sequential manner (first pick the product,

then the shipment, then claim a coupon), as is customary on e-commerce web-sites.

After the order is filled, the system awaits for the customer to submit a payment. If the

payment matches the amount owed, the system proceeds to shipping the product.

We define an artifact with the following variables:

status,prod_id,ship_type,coupon,amount_owed,

amount_paid,amount_refunded.

The status variable tracks the status of the order and can take the following values:

“edit_product”, “edit_ship”, “edit_coupon”, “processing”,

“received_payment”, “shipping”, “shipped”, “canceling”,

“canceled”.

Artifact variables ship_type and coupon record the customer’s selection, received as

an external input. amount_paid is also an external input (from the customer, possi-

bly indirectly via a credit card service). Variable amount_owed is set by the system

using arithmetic operations that sum up product price and shipment cost, subtracting

the coupon value. Variable amount_refunded is set by the system in case a refund is

activated.

The database includes the following tables (underlined attributes denote keys):

PRODUCTS(id,price,availability,weight),

COUPONS(code,type,value,min_value,free_shiptype),

SHIPPING(type,cost,max_weight),

OFFERS(prod_id,discounted_price,active).

The database also satisfies the following foreign keys:

COUPONS[free_shiptype]⊆ SHIPPING[type] and

OFFERS[prod_id]⊆ PRODUCTS[id].

21

Our framework’s domain is Q, however, in order to enhance readability and

without loss of generality, we allow non-numeric attributes over arbitrary domains, in-

cluding in particular enumeration types (as for the status artifact variable).

The starting configuration has status initialized to “edit_prod”, and all other

variables to “undefined”. By convention, in this example we model undefined variables

using the reserved constant λ . (This is syntactic sugar and does not affect the artifact

systems model. In the example for instance, any non-positive value can play this role.)

The initialization is easily expressed by the artifact system’s pre-condition Π.

The services. The following services model a few of the business process tasks.

choose_product The customer chooses a product.

π : status= “edit_prod”

ψ : ∃p,a,w(PRODUCTS(prod_id′, p,a,w)∧a > 0)

∧status′ = ”edit_shiptype”

choose_shiptype The customer chooses a shipping option.

π : status= “edit_ship”

ψ : ∃c, l, p,a,w(SHIPPING(ship_type′,c, l)∧

PRODUCTS(prod_id, p,a,w)∧ l > w)∧

status′ = “edit_coupon”∧prod_id′ = prod_id

apply_coupon The customer optionally inputs a coupon number.

π : status= “edit_coupon”

ψ : (coupon′ = λ ∧∃p,a,w,c, l(PRODUCTS(prod_id, p,

a,w) ∧SHIPPING(ship_type,c, l)∧amount_owed′

= p+ c)∧ status′ = “processing”∧prod_id′ =

prod_id∧ ship_type′ = ship_type)∨

(∃t,v,m,s, p,a,w,c, l(COUPONS(coupon′, t,v,m,s)∧

PRODUCTS(prod_id, p,a,w)∧SHIPPING(ship_type,

c, l) ∧p+ c≥ m∧ (t = “free_shipping”→

22

(s = ship_type∧amount_owed′ = p))∧

(t = “discount”→ amount_owed′ = p+ c− v))

∧status′ = “processing”∧prod_id′ = prod_id∧

ship_type′ = ship_type)

Notice that the pre-conditions π of the services check the value of the status

variable. For instance, according to choose_product, the customer can only input her

product choice while the order is in “edit_prod” status.

Also notice that the post-conditions ψ constrain the next values of the artifact

variables (denoted by a prime). For instance, according to choose_product, once a prod-

uct has been picked, the next value of the status variable is “edit_shiptype”, which will at

a subsequent step enable the choose_shiptype service (by satisfying its pre-condition).

Similarly, once the shipment type is chosen (as modeled by service choose_shiptype),

the new status is “edit_coupon”, which enables the apply_coupon service. The inter-

play of pre- and post-conditions achieves a sequential filling of the order, starting from

the choice of product and ending with the claim of a coupon.

A post-condition may refer to both the current and next values of the artifact

variables. For instance, in service choose_shiptype, the fact that only the shipment type

is picked while the product remains unchanged, is modeled by preserving the product

id: the next and current values of the corresponding artifact variable are set equal.

Pre- and post-conditions may query the database. For instance, in service

choose_product, the post-condition ensures that the product id chosen by the customer

is that of an available product (by checking that it appears in a PRODUCTS tuple, whose

availability attribute is positive).

Finally, notice the arithmetic computation in the post-conditions. For instance,

in service apply_coupon, the sum of the product price p and shipment cost c (looked

up in the database) is adjusted with the coupon value (notice the distinct treatment of

the two coupon types) and stored in the amount_owed artifact variable.

Observe that the first post-condition disjunct models the case when the customer

inputs no coupon number (the next value coupon′ is set to undefined), in which case a

different owed amount is computed, namely the sum of price and shipping cost. �

23

Dependencies We consider integrity constraints of the form

∀ūw̄ φ(ū, w̄)→∃v̄ψ(ū, v̄)

where φ and ψ are conjunctions of relational and equality atoms (positive literals over

the vocabulary including the relational schema and the equality predicate, respectively).

Such sentences are known as embedded dependencies and are sufficiently expressive

to specify all usual integrity constraints, such as keys, foreign keys, inclusion, join,

multivalued dependencies, etc. [Fag82, AHV95]. In this paper, we refer to embedded

dependencies in short as “dependencies”. We call φ the premise and ψ the conclusion.

We write A |= Σ if the instance A satisfies all the dependencies in Σ.

Example 2.1.9 We illustrate dependencies continuing Example 2.1.8. The key con-

straintPRODUCTS is expressed by the dependency

∀i, p1, a1,w1, p2,a2,w2

PRODUCTS(i, p1,a1,w1)∧PRODUCTS(i, p2,a2,w2)

→ p1 = p2∧a1 = a2∧w1 = w2.

The foreign key constraint on the OFFERS table is expressed by

∀i,d,v OFFERS(i,d,v)→∃p,a,w PRODUCTS(i, p,a,w). �

2.2 Temporal properties of

artifact systems

In order to specify temporal properties we use an extension of LTL (linear-time

temporal logic). Recall that LTL is propositional logic augmented with temporal opera-

tors X (next) and U (until) (e.g., see [Pnu77]). The extension we use, called1 LTL-FO,

is obtained from LTL by interpreting propositions as FO statements about particular ar-

tifact instances in the run. The different statements may share some global variables,

that are universally quantified.

1The variant of LTL-FO used here differs from previous ones in that the FO formulas interpreting
propositions are quantifier-free. By slight abuse we use here the same name.

24

Definition 2.2.1. Let A = 〈x̄,DB〉 be an artifact schema. An FO component over

A is a quantifier-free FO formula over DB ∪C . An LTL-FO formula over A is an

expression ∀ȳϕ f , where:

(i) ϕ is an LTL formula with propositions P;

(ii) f is a mapping from P to FO components over A

(iii) ϕ f is obtained by replacing each p ∈ P with f (p);

(iv) ȳ is the set of variables occurring in ϕ f that are different from x̄∪ x̄′.

The semantics of LTL-FO formulas is defined as follows. Let 〈A ,Σ,Π〉 be an

artifact system, ∀ȳϕ f an LTL-FO formula over A , and ρ a run of 〈A ,Σ,Π〉 on database

D. Let µ be a valuation of ȳ into Q. An FO component ψ(x̄, x̄′, ȳ) of ϕ f is satisfied

in ρi with valuation µ if D∪C |= ψ(ρi,ρi+1,µ), i ≥ 0. The run ρ satisfies ϕ f with

valuation µ if {σ(ρi)}i≥0 |= ϕ , where σ(ρi) is the truth assignment for P in which p is

true iff f (p) is satisfied in ρi with valuation µ . Finally, ρ |= ∀ȳϕ f if ρ |= ϕ f with every

valuation µ of ȳ into Q.

We say that an artifact system Γ satisfies an LTL-FO sentence ϕ , denoted Γ |= ϕ ,

if all runs of Γ satisfy ϕ . Note that the database is fixed for each run, but may be different

for different runs.

We illustrate LTL-FO in the context of Example 2.1.8.

Example 2.2.2 We show a few properties that specify desirable business rules for the

running example.

(ϕ1) ∀xG((amount_paid= x∧amount_paid= amount_owed)

→ F(status= ”shipped”∨amount_refunded= x))

Property ϕ1 states that if a correct payment is submitted then at some time in

the future either the product is shipped or the customer is refunded the correct amount.

ϕ1 is obtained from LTL property ϕ = G(p→ Fq) via the mapping f1, where f1(p) =

amount_paid= x∧amount_paid= amount_owed and f1(q) = status= ”shipped”∨

amount_refunded = x. Note the use of universally-quantified variable x to relate the

value of paid and refunded amounts across distinct steps in the run sequence.

25

(ϕ2) ∀ v,m,s, p,a,w,c, l(G(prod_id 6= λ ∧ship_type 6= λ

∧COUPONS(coupon,”free_ship”,v,m,s))∧

PRODUCTS(prod_id, p,a,w)∧SHIPPING(ship_type,c, l)

→ a > 0
︸ ︷︷ ︸

(i)

∧w≤ l
︸ ︷︷ ︸

(ii)

∧ p+ c≥ m
︸ ︷︷ ︸

(iii)

)

Property ϕ2 verifies the consistency of orders that use coupons for free shipping.

The premise of the implication lists the conditions for a completely specified order that

uses such coupons. The conclusion checks the following business rules (i) available

quantity of the product is greater than zero, (ii) the weight of the product is in the limit

allowed by the shipment method, and (iii) the total order value satifies the minimum for

the application of the coupon.

Note that this property holds only due to the integrity constraints on the schema.

Indeed, observe that (i) is guaranteed by the post-condition of service choose_product,

(ii) by choose_shiptype, and (iii) by apply_coupon. In the post-conditions, the checks

are perfomed by looking up in the database the weight/price/cost/limit attributes asso-

ciated to the customer’s selection of product id and shipment type (stored in artifact

variables). The property performs the same lookup in the database, and it is guaran-

teed to retrieve the same tuples only because product id and shipment type are keys for

PRODUCTS, respectively SHIPPING. The verifier must take these key declarations into

account, to avoid generating a spurious counter-example in which the tuples retrieved

by the service post-conditions are distinct from those retrieved by the property, despite

agreeing on product id and shipment type. �

We note right away that one can easily eliminate the global variables ȳ of the

LTL-FO formula ∀ȳϕ f .

Lemma 2.2.3. Given Γ and ∀ȳϕ f as above, one can construct in linear time an artifact

system Γ′ such that Γ |= ∀ȳϕ f iff Γ′ |= ϕ f .

Indeed, Γ′ is obtained from Γ by simply adding ȳ to its artifact variables and

propagating their values at each transition. Thus,we can assume that the LTL-FO for-

mulas to be verified have no global variables. Clearly, Γ |= ϕ f iff there is no run of Γ

satisfying ¬ϕ f . The verification problem will focus on the latter formulation.

26

Not surprisingly, model checking is undecidable for artifact systems and LTL-

FO properties, even if the system uses only a database (satifying given FDs) and no

arithmetic constraints, or only arithmetic constraints and no database.

Theorem 2.2.4. (i) It is undecidable, given an artifact system Γ = 〈A ,Σ,Π〉 where

A = 〈x̄,DB〉, a set F of FDs over DB, and an LTL-FO property ϕ such that ϕ and

all pre-and-post conditions of Σ and Π use only relations in DB, whether ϕ holds for

all runs of Γ on databases satisfying F.

(ii) It is undecidable, given an artifact system Γ = 〈A ,Σ,Π〉 where A =

〈x̄,DB〉 and an LTL-FO property ϕ such that ϕ and all pre-and-post conditions of

Σ and Π use only constraints in C , whether Γ |= ϕ .

Proof: Part (i) follows from Theorem 4.2 in [DHPV09]. Part (ii) is shown by defining

an artifact system that simulates a counter machine in conjunction with a property that

further forbids reachability of a given state of the machine (details ommitted). Since

state reachability is undecidable for counter machines [Min67], the result follows. �

Remark 2.2.5. Note that, in the absence of dependencies and arithmetic, the arti-

fact systems discussed here fall in the class of “guarded” artifact systems introduced

in [DHPV09] towards decidable static verification. Theorem 2.2.4 shows that the re-

sults of [DHPV09] do not transfer to the new setting. As detailed below, overcoming the

technical challenges introduced by arithmetic and dependencies requires developing a

fundamentally different proof technique and a novel syntactic restriction that yields de-

cidability.

2.3 Feedback-free artifact systems

We next define the feedback-free syntactic restriction, applying jointly to an ar-

tifact system and a property to be verified. The original intuition behind the notion of

feedback freedom comes from the proof of Theorem 2.2.4(ii), which shows that artifact

systems can simulate counter machines. Such an artifact system uses a service that per-

forms the increment operation on a counter variable, and allows the run to “feed back”

the incremented value into the same service (by updating the same counter variable) for

27

an unbounded number of times. Decrement is handled similarly. This simulation of

unbounded counters is responsible for undecidability. The feedback-freedom restriction

is designed to limit the data flow between occurrences of the same artifact variable at

different times in runs of the system that satisfy the desired property. This precludes

the ability to perform the kind of unbounded computations needed to simulate counter

machines. The intuition is further discussed after the formal definition of feedback-

freedom.

Symbolic runs In order to formalize the feedback free condition, we use the notion of

symbolic run. This will also provide the central component of our verification algorithm

presented in the next section.

Let Γ = 〈A ,Σ,Π〉 be an artifact system, where A = 〈x̄,DB〉, and ϕ f be an

LTL-FO formula with no global variables. Recall that our aim is to develop a procedure

for checking whether there exists a run of Γ satisfying ¬ϕ f .

To each x∈ x̄ we associate an infinite set of new variables {xi}i>0, and we denote

x̄i = {xi | x ∈ x̄}. A symbolic run ρ consists of a sequence {ψi(x̄i, x̄i+1)}i≥0 where

each ψi(x̄i, x̄i+1) is a CQ¬ formula over A with free variables among x̄i ∪ x̄i+1. The

formulas ψi are obtained from Σ and ϕ f as follows. We first define the sets of CQ¬

formulas below, that capture symbolically the possible transitions in Γ, together with

truth assignments to the propositions in ϕ , expanded in ϕ f via f . As earlier, P denotes

the set of propositions in ϕ .

1. ∆Σ. For each service 〈π,ψ〉 ∈ Σ, consider the formula ∃z̄ξ obtained from π ∧ψ

by putting it in prenex form and its quantifier-free body in DNF. For each such

formula, ∆Σ contains all formulas of the form ∃z̄ξd , where ξd is a disjunct of ξ .

2. ∆ϕ f containing, for each σ ∈ 2P, all disjuncts of the DNF of the formula

∧

σ(p)=1

f (p) ∧
∧

σ(p)=0

¬ f (p).

A symbolic transition template is a conjunction ψ(x̄, x̄′) of one formula from ∆Σ

and one from ∆ϕ f . Intuitively, the formula chosen from ∆Σ corresponds to a transition

caused by one of the services in Σ, while the formula chosen from ∆ϕ f determines a

28

truth assignment σ for the FO components of ϕ f . Note that there are finitely many such

formulas associated with ∆Σ and ∆ϕ f . For i > 0, each formula ψi in the symbolic run

is obtained from some symbolic transition template ψ(x̄, x̄′) by replacing x̄ with x̄i and

x̄′ with x̄i+1. We refer to ψi as a symbolic transition generated by ψ . For i = 0, ψ0

is obtained by taking the conjunction of a formula obtained as above with a formula

accounting for the pre-condition Π (specifically, a disjunct of the DNF of Π in prenex

form, where x̄ is replaced with x̄0). We denote by σi the truth assignment to the propo-

sitions P of ϕ defined by σi(p) = σ(f (p)). We say that the symbolic run ρ = {ψi}i≥0

satisfies ¬ϕ f , denoted ρ |= ¬ϕ f , iff {σi}i≥0 satisfies ¬ϕ .

To formalize the feedback-free condition, we associate two undirected graphs

Gψ and Eψ to each symbolic transition template ψ = ∃z̄(φ(x̄, x̄′, z̄)). The graph Gψ

captures all connections among variables occurring together in the same atom, whereas

Eψ captures equalities alone. Specifically, Gψ consists of the restriction to x̄, x̄′ of the

transitive closure of the graph containing an edge among every two variables occurring

together in an atom of ψ , and Eψ is the restriction to x̄, x̄′ of the transitive closure of

the graph containing an edge among every two variables in ψ that appear together in an

equality atom of ψ .

Similarly, we define for each symbolic transition ψi the graphs Eψi and Gψi by

replacing x̄ by x̄i and x̄′ with x̄i+1 in Eψ and Gψ . Given a symbolic run ρ = {ψi}i≥0, we

define Gρ = ∪i≥0 Gψi and Eρ as ∪i≥0Eψi . We also denote by E∗ρ the transitive closure

of Eρ . The graphs associated with finite symbolic runs are defined analogously.

Clearly, E∗ρ is an equivalence relation on the variables of ρ . For each variable xi,

we denote by [xi] its equivalence class with respect to E∗ρ . The span of an equivalence

class [xi] is defined as span([xi]) = { j | x j ∈ [xi]}. It is clear that span([xi]) is always an

interval (possibly infinite).

Example 2.3.1 We illustrate symbolic transition templates and the associated graphs

Gψ ,Eψ ,Gρ ,Eρ using the artifact system from Example 2.1.8, and the following property

ϕ f = F(status= “shipped”∨status= “canceled”).

The corresponding ∆ϕ f is

∆ϕ f ={status= “shipped”∨status= “canceled”,

29

¬(status= “shipped”∨status= “canceled”)}.

To build ∆Σ, we need to rewrite the conjunction of pre- and post-condition for

each service into prenex DNF, and add each disjunct as a separate formula to ∆Σ. The

pre- and post-conditions of services choose_product and choose_shiptype are conjunc-

tive, so only trivial prenex normal form rewriting is needed, which we omit. For service

apply_coupon, we obtain five disjuncts
∨5

i=1 ξi for the DNF of π ∧ψ . We show ξ2

below; ξ1 corresponds to the case when the customer inputs no coupon number, while

ξ2, . . . ,ξ5 correspond to various coupon type combinations (discount, free shipping). ξ2

is the case of a discount coupon of value v:

ξ2: prod_id′ = prod_id∧ship_type′ = ship_type

∧ status= “edit_coupon”∧status′ = “processing”∧

∃ t,v,m,s, p,a,w,c, l (

COUPONS(coupon′, t,v,m,s)∧PRODUCTS(prod_id, p,a,w)

∧SHIPPING(ship_type,c, l)∧¬(t = “free_shipping”)

∧ p+ c≥ m∧ amount_owed′ = p+ c− v)

Given the above sets ∆Σ,∆ϕ f , one of the resulting symbolic transition templates is for

instance

ψ = ξ2∧¬(status= “shipped”∨status= “canceled”).

Figure 6.1(a) depicts the graphs Gψ and Eψ for all transition templates. In the

case of apply_coupon, we indicate which disjunct ξi is used. The dashed (blue) edges

correspond to equality atoms and belong to both Eψ and Gψ . Solid (red) edges corre-

spond to relational atoms and belong to Gψ only.

For instance, in the case of choose_shiptype, the dashed edge from prod_id

to prod_id′ reflects the fact that the product id remains unchanged, as specified by

the corresponding equality atom in the post-condition. The solid edge from prod_id

to ship_type reflects the folowing transitive connection between the two artifact vari-

ables: prod_id is directly connected to non-artifact variable w by co-occurrence in the

PRODUCTS atom; w is directly connected to l via the arithmetic constraint; l is directly

connected to ship_type′ via the SHIPPING atom.

32

Notice that every path from ship_type3 to ship_type7 must pass through node

prod_id4, and that

span([prod_id4])⊇ [2,7]

⊇ span([ship_type3])∪ span([ship_type7]).

�

As discussed earlier, feeback-freedom is meant to restrict the ability to perform

computation such as needed to simulate a counter machine, requiring repeated incre-

ments/decrements of the same variable. This is done by preventing unbounded updates

to a variable’s current value that depend on its history. Instead, while feedback-free

processes still support updating an artifact variable (x) an unbounded number of times,

feedback-freedom guarantees that each updated value is independent of how the value

of x evolved historically from step i to step j (i < j). Indeed, x j depends only on the

values of other variables (say y), which are preserved throughout the computation from

i to j (span([y])⊇ span([xi])∪ span([x j])).

Example 2.3.4 In Example 2.3.3, the arithmetic constraint satisfied by the shipment

type considered at instant 7 does not depend on the previous shipment choice at instant

3, and can be described directly in relation to the product id, which remains constant

throughout. This independence would hold even in a run in which the customer repeat-

edly alternated between making up and changing her mind about the shipment type,

possibly re-considering (and again discarding) the same shipment types several times.

Similarly, the current balance can be computed directly on the current order snapshot,

being independent of the previous ones. �

We formalize this intuition in Section 3.1, where we show that under feedback-

freedom it suffices for the verification algorithm to keep only a “compressed” history of

bounded size, in form of “inherited constraints” on the artifact variable values at every

step.

We claim that the feedback freedom condition is permissive enough to capture

a wide class of applications of practical interest. Indeed, this is confirmed by numerous

33

examples of practical business processes modeled as artifact systems, that we encoun-

tered due to our collaboration with IBM. Many of these, including typical e-commerce

applications, satisfy the feedback freedom condition. The underlying reason seems to be

that business processes are usually not meant to “chain” an unbounded number of tasks

together, with the output of each task being input to the next. Instead, the unboundedness

is usually confined to two forms, both consistent with feeback-freedom:

1. Allowing a certain task to undo and retry an unbounded number of times,

with each retrial independent of previous ones, and depending only on a context that

remains unchanged throughout the retrial phase. A typical example is repeatedly pro-

viding credit card information until the payment goes through, while the order details

remain unchanged. Another is the situation in which an order is filled according to se-

quentially ordered phases, where the customer can repeatedly change her mind within

each phase while the input provided in the previous phases remains unchanged (e.g.

changing her mind about the shipment type for the same product, the rental car reserva-

tion for the same flight, etc.)

2. Allowing a task to batch-process an unbounded collection of inputs, each pro-

cessed independently, within an otherwise unchanged context (e.g. sending invitations

to an event to all attendants on the list, for the same event details).

A way to visualize the types of unboundedness represented in business processes

is the following. Consider a call graph whose nodes are the actual invocations of ser-

vices during the run (with instantiated input parameters). Draw an edge from task in-

vocation a to task invocation b whenever b takes as input some of a’s output, or reads

global data modified by a. The call graph is (or can be unfolded into) a tree. Feedback-

free processes disallow call trees of unbounded height, but allow unbounded outdegrees

of the tree nodes.

Testing feedback-freedom We next show that testing feedback-freedom of (Γ,ϕ f) can

be reduced to testing emptiness of a non-deterministic finite-state automaton A(Γ,ϕ f).

Since a direct construction requires some rather tedious bookkeeping, we describe in-

stead for simplicity a two-way alternating automaton T(Γ,ϕ f) whose emptiness is equiva-

lent to feedback-freedom. Recall that, in each transition, the head of a two-way automa-

ton may move to the right or to the left of the current position, or may be stationary. An

34

alternating automaton augments non-determinism with universal and existential states.

Acceptance from an existential state occurs if there exists a transition to a next state lead-

ing to acceptance, whereas acceptance from a universal state occurs if all transitions to

a next state lead to acceptance. It is well-known that two-way alterating automata can

be converted to classical one-way automata, and testing emptiness is PSPACE-complete

(see [MNG08, LLS84, Bir96]).

Intuitively, T(Γ,ϕ f) guesses a violation of feedback-freedom for (Γ,ϕ f). Recall

that a violation consists in a prefix ρ of a symbolic run in which there are two occur-

rences xi,x j of the same variable x in configurations i and j such that there exists a path

from xi to x j in Gρ so that no variable v occurring along the path has the property that

span(xi)∪ span(x j)⊆ span(v).

We next describe T(Γ,ϕ f) informally. The alphabet consists of the symbolic tran-

sition templates, augmented with several kinds of markers:

• ε (emtpy marker)

• x1 for x ∈ x̄; this identifies one occurrence of x

• x2 for x ∈ x̄; this identifies a second occurrence of x

• [1x and]1x for x ∈ x̄; this identifies the beginning, resp. the end of the span of x1;

• [2x and]2x for x ∈ x̄; this identifies the beginning, resp. the end of the span of x2;

Formally, the alphabet of T(Γ,ϕ f) consists of pairs of symbolic transition tem-

plates and subsets of the above markers. The automaton T(Γ,ϕ f) performs the following

tests, carried out sequentially in multiple passes. For an occurrence of a marker α , we

denote by pos(α) its position in the word.

• there is a single occurrence of each of the markers xi, [ix,]
i
x for some x ∈ x̄ and

pos([ix)≤ pos(xi)≤ pos(]ix), i ∈ {1,2};

• span(xi) = [pos([ix), pos(]ix)]; this can be tested by first generating a path in

Eρ from x in pos(xi) to some variable in pos([ix), and similarly a path from x in

pos(xi) to some variable in pos(]ix), and then checking that every non-determinis-

tically generated path in Eρ originating from x in pos(xi) never reaches pos([ix)−1

or pos(]ix)+1. The latter is easily done using universal states.

35

• there exists a path from x in pos(x1) to x in pos(x2) in Gρ such that for every

variable v along the path, span(v) does not

include [min{pos([ix) | i = 1,2},max{pos(]ix) | i = 1,2}]. This is checked using an

alternation of existential and universal states. Specifically, every time a new v is

generated along the path, the following must be tested for every path in Eρ starting

at v: the path does not touch both min{pos([ix) | i = 1,2} and max{pos(]ix) | i =

1,2}].

It is easily seen that one can construct a two-way alternating automaton test-

ing the above properties, that uses polynomially many states in (Γ,ϕ f). However, the

automaton uses an alphabet of exponential size with respect to (Γ,ϕ f), because there

are exponentially many symbolic transition templates. Observe that the size of each

alphabet symbol is polynomial in (Γ,ϕ f).

We have the following:

Lemma 2.3.5. (Γ,ϕ f) is feedback-free iff the language accepted by T(Γ,ϕ f) is empty.

As stated earlier, emptiness of two-way alternating automata can be checked in

PSPACE (see [MNG08, LLS84, Bir96]) with respect to the number of states and the size

of the alphabet. Recall that the size of the alphabet of T(Γ,ϕ f) is exponential with respect

to (Γ,ϕ f). However, because the reduction in [Bir96] yields an exponential blowup of

the input in the number of states but not in the size of the alphabet, it follows that the

complexity of testing emptiness of T(Γ,ϕ f) remains PSPACE with respect to (Γ,ϕ f). This

completes the proof.

Remark 2.3.6. The automata-theoretic approach to testing feedback-freedom can be

used to refine the notion of feedback-free by taking into account additional restrictions

on the allowed runs of the artifact system. For example, if additional control is specified

by a Büchi automaton B, testing feedback-freedom for runs satisfying the additional

control reduces to testing emptiness of the cross-product automaton B×A(Γ,ϕ f) (with

A(Γ,ϕ f) easily turned first into a Büchi automaton).

36

2.4 Full E-Commerce Example

We model a simplified e-commerce business process. The customer can choose

a product, a shipment method and apply a coupon to the order. There are two kinds of

coupons: discount coupons subtract their value from the total (e.g. a $50 coupon) and

free-shipment coupons subtract the shipping costs from the total.

The order is filled in a sequential manner as is customary on e-commerce web-

sites. After the order is filled, the system awaits for the customer to submit a payment.

If the payment matches the amount owed, the system proceeds to shipping the product.

At any time before submitting a valid payment, the customer may edit the order (select

a different product, shipping method, or change/add a coupon) an unbounded number of

times. At any time, even after submitting a valid payment, the customer may cancel the

order, for a refund, if the order hasn’t shipped yet.

The artifact variables. We model our running example using an artifact

system. We define an artifact with the following variables:

status,prod_id,ship_type,coupon,amount_owed,

amount_paid,amount_refunded.

The status variable tracks the status of the order and can take the following values:

“edit_product”, “edit_ship”, “edit_coupon”, “processing”, “received_payment”,

“shipping”, “shipped”, “canceling”, “canceled”.

Artifact variables ship_type and coupon record the customer’s selection, re-

ceived as an external input. amount_paid is also an external input (from the customer,

possibly indirectly via a credit card service). Variable amount_owed is set by the sys-

tem using arithmetic operations that sum up product price and shipment cost, subtracting

the coupon value. Variable amount_refunded is set by the system in case a refund is

activated.

The database includes the following tables (underlined attributes denote keys):

37

PRODUCTS(id,price,availability,weight),

COUPONS(code,type,value,min_value,free_shiptype),

SHIPPING(type,cost,max_weight),

OFFERS(prod_id,discounted_price,active).

The database also satisfies the following foreign keys:

COUPONS[free_shiptype]⊆ SHIPPING[type] and

OFFERS[prod_id]⊆ PRODUCTS[id].

Our framework’s domain is Q, however, in order to enhance readability and

without loss of generality, we allow non-numeric attributes over arbitrary domains, in-

cluding in particular enumeration types (as for the status artifact variable).

The starting configuration has status initialized to “edit_prod”, and all other

variables to “undefined”. By convention, in this example we model undefined variables

using the reserved constant λ . (This is syntactic sugar and does not affect the artifact

systems model. In the example for instance, any non-positive value can play this role.)

This is easily expressed by the artifact system’s pre-condition Π:

Π : status= “edit_prod”∧prod_id= λ ∧ship_type= λ

∧ coupon= λ ∧amount_owed= λ ∧amount_paid= λ

∧ amount_refunded= λ

The services. The following services model a few of the business process tasks

(for a complete list, see Appendix 2.4).

choose_product The customer chooses a product among the available ones.

π : status= “edit_prod”

ψ : ∃p,a,w(PRODUCTS(prod_id′, p,a,w)∧a > 0)∧status′ = ”edit_shiptype”

choose_shiptype The customer chooses a shipping option.

π : status= “edit_ship”

38

ψ : ∃c, l, p,a,w(SHIPPING(ship_type′,c, l)∧

PRODUCTS(prod_id, p,a,w)∧ l > w)∧

status′ = “edit_coupon”∧prod_id′ = prod_id

apply_coupon The customer optionally inputs a coupon number.

π : status= “edit_coupon”

ψ : (coupon′ = λ ∧∃p,a,w,c, l(PRODUCTS(prod_id, p,a,w)

∧SHIPPING(ship_type,c, l)∧amount_owed′ = p+ c)∧

status′ = “processing”∧prod_id′ = prod_id∧

ship_type′ = ship_type)∨

(∃t,v,m,s, p,a,w,c, l(COUPONS(coupon′, t,v,m,s)∧

PRODUCTS(prod_id, p,a,w)∧SHIPPING(ship_type,c, l)

∧p+ c≥ m∧ (t = “free_shipping”→

(s = ship_type∧amount_owed′ = p))∧

(t = “discount”→ amount_owed′ = p+ c− v))

∧status′ = “processing”∧prod_id′ = prod_id∧

ship_type′ = ship_type)

edit_product The customer chooses another product.

π :status= “edit_shiptype”∨status= “edit_coupon”∨

status= “processing”

ψ : status′ = “edit_prod”

edit_shiptype The customer chooses another shipment type.

π : status= “edit_coupon”∨status= “processing”

ψ : status′ = “edit_shiptype”∧prod_id′ = prod_id

edit_coupon The customer applies a different coupon.

π : status= “processing”

ψ :status′ = “edit_coupon”∧prod_id′ = prod_id∧

ship_type′ = ship_type

39

receive_payment The customer sends a payment.

π : status= “processing”

ψ :amount_paid′ ≥ 0∧status′ = “received_payment”∧

prod_id′ = prod_id∧ship_type′ = ship_type∧

coupon′ = coupon∧amount_owed′ = amount_owed

check_payment Check payment and ship the product.

π : status= “received_payment”

ψ :((amount_paid 6= amount_owed)→

(status′ = “received_payment”∧amount_paid′ = 0))∧

((amount_paid= amount_owed)→

(status′ = “shipping”∧amount_paid′ = amount_paid))∧

prod_id′ = prod_id∧ship_type′ = ship_type∧

coupon′ = coupon∧amount_owed′ = amount_owed

ship A paid order gets shipped.

π : status= “shipping”

ψ :status′ = “shipped”∧prod_id′ = prod_id∧

ship_type′ = ship_type∧coupon′ = coupon∧

amount_owed′ = amount_owed∧

amount_paid′ = amount_paid

cancel_order The customer cancels the order.

π : ¬(status= “canceled”∨status= “canceling”)

ψ :(amount_paid= 0→ status′ = “canceled”)∧

(amount_paid> 0→ status′ = “canceling”)∧

prod_id′ = prod_id∧ship_type′ = ship_type∧

coupon′ = coupon∧amount_owed′ = amount_owed

∧amount_paid′ = amount_paid

40

refund_payment Payment is refunded in case of canceled order.

π : status= “canceling”

ψ :amount_paid′ = 0

∧amount_refunded′ = amount_paid∧

status′ = “canceled”∧prod_id′ = prod_id∧

ship_type′ = ship_type∧coupon′ = coupon∧

amount_owed′ = amount_owed

Notice that the pre-conditions π of the services check the value of the status

variable. For instance, according to choose_product, the customer can only input her

product choice while the order is in “edit_prod” status.

Also notice that the post-conditions ψ set the next values of the artifact variables

(denoted by a prime). For instance, according to choose_product, once a product has

been picked, the next value of the status variable is “edit_shiptype”, which will at a

subequent step enable the choose_shiptype service (by satisfying its pre-condition).

Similarly, once the shipment type is chosen (as modeled by service choose_shiptype),

the new status is “edit_coupon”, which enables the apply_coupon service.

A post-condition may refer to both the current and next values of the artifact

variables. For instance, in service choose_shiptype, the fact that only the shipment type

is picked, while the product is unchanged, is modeled by preserving the product id: the

next and current values of the corresponding artifact variable are set equal.

Pre- and post-conditions may query the database. For instance, in service

choose_product, the post-condition ensures that the product id chosen by the customer

is that of an available product (by checking that it appears in a PRODUCTS tuple, whose

availability attribute is positive).

Finally, notice the arithmetic computation in the post-conditions. For instance,

in service apply_coupon, the sum of the product price p and shipment cost c (looked

up in the database) is adjusted with the coupon value (notice the distinct treatment of

the two coupon types) and stored in the amount_owed artifact variable.

We also assume some status values as final, meaning that the order can rest in

those states forever. These states are “shipped” and “canceled”. This is modeled by two

dummy services that simply repeat any configuration with this status:

41

shipped_dummy A shipped order remains shipped.

π : status= “shipped”

ψ :status′ = status∧prod_id′ = prod_id∧

ship_type′ = ship_type∧coupon′ = coupon∧

amount_owed′ = amount_owed

∧amount_paid′ = amount_paid

∧amount_refunded′ = amount_refunded

canceled_dummy A canceled order remains canceled.

π : status= “canceled”

ψ :status′ = status∧prod_id′ = prod_id∧

ship_type′ = ship_type∧coupon′ = coupon∧

amount_owed′ = amount_owed

∧amount_paid′ = amount_paid

∧amount_refunded′ = amount_refunded

Some properties

We show a few properties that specify desirable business rules for the running

example.

(ϕ1) ∀xG((amount_paid= x∧amount_paid= amount_owed)

→ F(status= ”shipped”∨amount_refunded= x))

Property ϕ1 states that if a correct payment is submitted then at some time in

the future either the product is shipped or the customer is refunded the correct amount.

ϕ1 is obtained from LTL property ϕ = G(p→ Fq) via the mapping f1, where f1(p) =

amount_paid= x∧amount_paid= amount_owed and f1(q) = status= ”shipped”∨

amount_refunded = x. Note the use of universally-quantified variable x to relate the

value of paid and refunded amounts across distinct steps in the run sequence.

(ϕ2) ∀ v,m,s, p,a,w,c, l(G(prod_id 6= λ ∧ship_type 6= λ

42

∧COUPONS(coupon,”free_ship”,v,m,s))∧

PRODUCTS(prod_id, p,a,w)∧SHIPPING(ship_type,c, l)

→ a > 0
︸ ︷︷ ︸

(i)

∧w≤ l
︸ ︷︷ ︸

(ii)

∧ p+ c≥ m
︸ ︷︷ ︸

(iii)

)

Property ϕ2 verifies the consistency of orders that use coupons for free shipping.

The premise of the implication lists the conditions for a completely specified order that

uses such coupons. The conclusion checks the following business rules (i) available

quantity of the product is greater than zero, (ii) the weight of the product is in the limit

allowed by the shipment method, and (iii) the total order value satifies the minimum for

the application of the coupon.

Note that this property holds only due to the integrity constraints on the schema.

Indeed, observe that (i) is guaranteed by the post-condition of service choose_product,

(ii) by choose_shiptype, and (iii) by apply_coupon. In the post-conditions, the checks

are perfomed by looking up in the database the weight/price/cost/limit attributes asso-

ciated to the customer’s selection of product id and shipment type (stored in artifact

variables). The property performs the same lookup in the database, and it is guaran-

teed to retrieve the same tuples only because product id and shipment type are keys for

PRODUCTS, respectively SHIPPING. The verifier must take these key declarations into

account, to avoid generating a spurious counter-example in which the tuples retrieved

by the service post-conditions are distinct from those retrieved by the property, despite

agreeing on product id and shipment type.

(ϕ3) ∀p,a(G(OFFERS(prod_id, p,a)→

F(status= “shipped”∨status= “canceled))).

(ϕ3) checks that for products offered on sale, the business process eventually

reaches either the “shipped” or “canceled” status. Notice that the appropriate

services manipulate explicitly only the PRODUCTS table, so a property involving the

OFFER table would have no reason to hold in general. It does hold in particular, due to

the foreign key between OFFERS and PRODUCTS.

43

Symbolic transition templates and computation graph

In Example 2.3.1 and Figure 6.1, we illustrate symbolic transition templates and

the associated graphs Gψ ,Eψ ,Gρ ,Eρ for the property

ϕ f = F(status= “shipped”∨status= “canceled”).

We provide here further details for this example.

To build ∆Σ, we need to rewrite the conjunction of pre- and post-condition for

each service into prenex DNF, and add each disjunct as a separate formula to ∆Σ. The

pre- and post-conditions of services choose_product and choose_shiptype are conjunc-

tive, so only trivial prenex normal form rewriting is needed, which we omit. For service

apply_coupon, we obtain five disjuncts
∨5

i=1 ξi for the DNF of π ∧ψ:

ξ1: prod_id′ = prod_id ∧ ship_type′ = ship_type ∧ coupon′ = λ ∧ status =

“edit_coupon”∧status′ = “processing”∧

∃p,a,w,c, l(PRODUCTS(prod_id, p,a,w)∧

SHIPPING(ship_type,c, l)∧amount_owed′ = p+ c)

ξ2: prod_id′ = prod_id ∧ ship_type′ = ship_type ∧ status = “edit_coupon” ∧

status′ = “processing”∧

∃t,v,m,s, p,a,w,c, l(COUPONS(coupon′, t,v,m,s)∧

PRODUCTS(prod_id, p,a,w) ∧ SHIPPING(ship_type,c, l) ∧ p + c ≥ m ∧ ¬(t =

“free_shipping”)∧amount_owed′ = p+ c− v)

ξ3: prod_id′ = prod_id ∧ ship_type′ = ship_type ∧ status = “edit_coupon” ∧

status′ = “processing”∧

∃t,v,m,s, p,a,w,c, l(COUPONS(coupon′, t,v,m,s)∧

PRODUCTS(prod_id, p,a,w) ∧ SHIPPING(ship_type,c, l) ∧ p + c ≥ m ∧ ¬(t =

“discount”)∧ s = ship_type∧amount_owed′ = p)

ξ4: prod_id′ = prod_id ∧ ship_type′ = ship_type ∧ status = “edit_coupon” ∧

status′ = “processing”∧

∃t,v,m,s, p,a,w,c, l(COUPONS(coupon′, t,v,m,s)∧

PRODUCTS(prod_id, p,a,w) ∧ SHIPPING(ship_type,c, l) ∧ p + c ≥ m ∧ s =

ship_type∧amount_owed′ = p∧amount_owed′ = p+ c− v)

46

status2 = “edit_shiptype”

ψ2 : status2 = “edit_ship”∧χ2(prod_id2,ship_type3)∧

status3 = “edit_coupon”∧prod_id3 = prod_id2

ψ3 : status3 = “edit_coupon”∧status4 = “processing”∧

prod_id4 = prod_id3∧ship_type4 = ship_type3∧

χ3(prod_id3,ship_type3,coupon4,amount_owed4)

ψ4 : status4 = “processing”∧status5 = “edit_shiptype”∧

prod_id5 = prod_id4

We illustrate η∗5 next, which (recall from Section 3.1) is the rewriting of η5 by

pushing quantifiers inside. To simplify presentation we abstract away from the status

artifact variable.

η∗5= χ1([prod_id2])∧∃[ship_type3](χ2([prod_id2],

[ship_type3])∧∃[coupon4], [amount_owed4](χ3([prod_id2],

[ship_type3], [coupon4], [amount_owed4])))

The forest representation of η∗5 is 2 :

η∗5= [prod_id2](χ1([prod_id2]), [ship_type3](χ2([prod_id2],

[ship_type3]), [coupon4]([amount_owed4](χ3([prod_id2],

[ship_type3], [coupon4], [amount_owed4])))))

Notice the dramatic reduction in quantifier rank, from 24 to 11. The

quantifier rank of η∗5 is 11, since sub-formula χ3 has quantifier rank 9 (maxi-

mum among χ1,χ2,χ3), and it occurs in the scope of the two quantified variables

[coupon4], [amount_owed4].

To follow how η∗5 was constructed, recall that the construction recursively splits

the computation graph into connected components, obtaining the formula for each com-

ponent from those of its sub-components. For instance, notice that the sub-component

2Convention: we slightly modify the simplified syntax tree notation for ∃FO formulas from Section ??,
to avoid a clash between the angular brackets used for variable equivalence classes and the ones used for
the children of a node. We show the list of children in parentheses instead.

47

labeled s1 in Figure 2.4 is obtained after removing the maximum-span equivalence class

[prod_id2]. In turn, nested sub-component s2 is obtained after removing from s1 its

maximum-span equivalence class

[ship_type3].

The nested sub-component structure mirrors the forest representation of the re-

sulting formula. To illustrate, notice that for η∗5 , the sub-formula µ1 corresponds to

component s1, and µ2 to s2:

µ1= ∃[ship_type3](χ2([prod_id2], [ship_type3])∧∃

[coupon4], [amount_owed4](χ3([prod_id2], [ship_type3],

[coupon4], [amount_owed4])))

µ2= ∃[coupon4], [amount_owed4](χ3([prod_id2], [ship_type3],

[coupon4], [amount_owed4]))

Intuitively, µ1 relates the product id chosen by the user at step 2 ([prod_id2])

with the shipment type picked at step 3 ([ship_type3]), then µ2 relates the latter with

the coupon claimed at step 4

([coupon4]).

Finally, we illustrate reduced inherited constaints, and how they repeat during

the run. Consider the inherited constraint at step 8, η∗8 , derived from the computational

graph prefix in Figure 2.5. It is easy to see that the forest representation of η∗8 has two

identical children of the root node [prod_id2], corresponding to the sub-components

delineated by blue dashed edges:

η∗8= [prod_id2](χ1([prod_id2]),µ1([prod_id2]),

χ1([prod_id2]),µ1([prod_id2]))

Observe that the reduced constraints coincide:

red(η∗5) = red(η∗8) = η∗5 .

Acknowledgement

Alin Deutsch and Victor Vianu co-authored this chapter.

3 Verification of

Feedback-free Systems

The main result of this section is that model checking LTL-FO properties is de-

cidable if the artifact system together with the property are feedback-free. In Section 3.2,

we extend this result to the presence of integrity constraints on database relations.

Theorem 3.0.1. It is decidable, given an artifact system Γ and an LTL-FO formula ∀ȳϕ f

such that (Γ,∀ȳϕ f) is feedback-free, whether ∀ȳϕ f holds for every run ρ of Γ.

The proof requires developing some technical machinery, and is outlined in the

remainder of the chapter. In the next section we consider the case with no data depen-

dencies, and we will later show how to take them into account.

3.1 Verification with only arithmetic

Let Γ = 〈A ,Σ,Π〉 where A = 〈x̄,DB〉. Recall that, by Lemma 2.2.3, one can

eliminate the global variables ȳ of the LTL-FO formula ∀ȳϕ f . Thus, we can assume the

LTL-FO formula to be verified is simply ϕ f . Clearly, Γ |= ϕ f iff there is no run of Γ that

satisfies ¬ϕ f . We will prove the theorem by showing decidability of the latter property.

The verification algorithm makes use of the symbolic runs introduced earlier. We

claim that symbolic runs provide a representation of all actual runs of an artifact system.

Let ρ = {ψi}i≥0 be a symbolic run of Γ. To each such symbolic run and each database

instance D we associate a set of actual runs on D as follows. Let var(ρ) = {x̄i | i ≥ 0}

and ∆ρ = {ψi|i≥ 0}. Note that the set of free variables of formulas in ∆ρ is var(ρ). Let

RunsD(ρ) = {{ν(x̄i)}i≥0 | ν is a valuation of var(ρ) into Q

48

49

such that D∪C |= ∆ρ}

We say that ρ is satisfiable if there exists a database instance D such that RunsD(ρ) 6= /0.

We use analogous defnitions and notation for the case when ρ is a prefix of a symbolic

run. In particular, for j > 0, we denote by ρ| j the prefix {ψi}i< j of ρ and refer to

RunsD(ρ| j) with the obvious meaning.

The following establishes the desired connection between symbolic runs and

actual runs.

Lemma 3.1.1. (i) For each database instance D, RunsD(Γ) = ∪{RunsD(ρ) |

ρ is a symbolic run of Γ}. (ii) There exists a run of Γ satisfying ¬ϕ f iff there exists a

satisfiable symbolic run of Γ satisfying ¬ϕ f .

Proof: Consider (i). Suppose ρ = {ρi}i≥0 is a run of Γ on database D. By defini-

tion, for each i ≥ 0 there exists a formula δ (x̄i, x̄i+1) ∈ ∆Σ so that D∪C |= δ (ρi,ρi+1).

Also, for each FO component f (p) of ¬ϕ f , either D∪C |= f (p)(ρi,ρi+1) or D∪C |=

¬ f (p)(ρi,ρi+1). It follows that there exists a formula ψi constructed as above from ∆Σ

and ∆ϕ f so that D∪C |= ψi(ρi,ρi+1). (For ψ0, the pre-condition Π is also taken into

account in the obvious way.) Let ρ = {ψi}i≥0. By construction, ρ ∈ RunsD(ρ). The

converse is similar.

Part (ii) follows from the observation that for every run ρ ∈ RunsD(ρ), the same

FO components of ϕ f are satisfied in the i-th configuration of ρ and ρ . Thus, ρ |= ¬ϕ f

iff ρ |= ¬ϕ f . �

In view of the above, it is sufficient to check the existence of a satisfiable sym-

bolic run of Γ satisfying ¬ϕ f . To prove decidability, we show that it is enough to con-

sider prefixes of symbolic runs of statically bounded length.

Consider a symbolic run {ψi}i≥0. We define for each j > 0 the inherited con-

straint of configuration j, denoted η j, which summarizes the constraints on configura-

tion j imposed by the prefix leading to it, i.e. {ψi}i< j. The inherited constraint η j(x̄ j) is

defined as ∃z̄
∧

i< j ψi where z̄ are all variables other than x̄ j. The following is immediate

from the definitions.

50

Lemma 3.1.2. Let ρ = {ψi}i≥0 be a symbolic run and D a database instance. Then for

every j > 0,

{ρ j | {ρi}0≤i≤ j ∈ RunsD(ρ| j)}= {ρ j | D∪C |= η j(ρ j)}.

In other words, η j defines precisely the set of valuations of x̄ reachable in the

last configuration of a run in RunsD(ρ| j). Note that this is generally a strict superset of

{ρ j | {ρi}i≥0 ∈ RunsD(ρ)}.

We next show the key fact that for a feedback-free system there are only finitely

many inherited constraints up to logical equivalence. This is done by rewriting each

such constraint as a CQ¬ formula of bounded quantifier rank. Recall that the quantifier

rank of a formula is the maximum number of quantifiers along a path from root to leaf in

the syntax tree of the formula, and that there are finitely many non-equivalent formulas

of given quantifier rank over a given vocabulary (e.g., see [Lib04]). The number of

non-equivalent formulas is hyperexponential in the quantifier rank.

Lemma 3.1.3. For each η j one can construct an equivalent CQ¬ formula η̄ j of quanti-

fier rank bounded by k2 +q, where k = |x̄| and q is the maximum quantifier rank of the

formulas used in pre-and-post conditions of services in Σ.

The coming proof shows how to rewrite η j as a formula η∗j of quantifier rank

at most k2 + q, whose variables are the equivalence classes of variables in ρ| j induced

by the equality graph E∗ρ| j . The construction of η∗j is non-deterministic, so several out-

comes are possible, all with the same quantifier rank. Finally, η̄ j is obtained from η∗j by

replacing its free variables with x̄ j. We will refer to η∗j in the sequel.

Proof: Let η j be defined as above. Recall that service pre-and-post conditions may

contain ∃FO formulas, so the ψi may generally contain such subformulas. We assume

first for simplicity that the ψi are quantifier free, and deal with the ∃FO subformulas

later. We denote by ξ =
∧

i< j ψi, so η j = ∃z̄ξ . Consider the equivalence relation induced

by the equality atoms in η j on the variables {x̄i}i≤ j. We denote the equivalence class of

y by [y] (when η j is understood). By slight abuse, we use such equivalence classes as

variables in the fomula we are constructing. Thus, we begin by eliminating all positive

equality atoms from η j and replacing in each non-equality atom each variable y by its

51

equivalence class [y]. Let us denote by [η j] the resulting formula. Note that the set of free

variables of [η j] is now the set of equivalence classes of variables in x̄ j, denoted [x̄ j]. It

is clear by construction that for every database D, D∪C |= η j(x̄ j) iff D∪C |= [η j]([x̄ j]).

We will ensure later that the final formula η̄ j has free variables x̄ j rather than [x̄ j].

Note that [η j] is in existential prenex form. We next show that the quantifiers can

be pushed inside, resulting in a formula η∗j of quantifier rank bounded by k2. To this end,

we will use the computation graph associated with a symbolic run (or a prefix thereof).

Let us denote by G j the graph on equivalence classes induced by the computation graph

of ξ . More precisely, if there is an edge from xi to yn in Gξ , then there is an edge from

[xi] to [yn] in G j. Consider a formula β consisting of the conjunction of a subset of the

literals of [ξ] and let Gβ be its associated computation graph (so a subgraph of G j). Let

ȳ be a subset of the variables of β . The width of ȳ is defined as

w(ȳ) = max{|v̄| | v̄⊆ x̄i, and each v ∈ v̄ is in an

equivalence class y ∈ ȳ}.

We prove the statement for formulas γ(s̄) = ∃ȳβ (ȳ, s̄) with free variables s̄, such

that the restriction of Gβ to ȳ, denoted Gβ |ȳ, is connected. More precisely, we show

that each such formula can be rewritten with quantifier rank bounded by k·w(ȳ), where

k = |x̄|. The proof is by induction on w(ȳ). If w(ȳ) = 0 then ȳ = /0 so qd(γ) = 0. Now

suppose the statement holds for w(ȳ) < n and consider γ(s̄) = ∃ȳβ (s̄) where w(ȳ) = n

and Gβ |ȳ is connected. Consider the set S of maximal spans of variables in ȳ in ρ j (with

respect to inclusion). For each s∈ S, let ys be a variable in ȳ for which span(ys) = s, and

let ȳmax = {ys | s ∈ S}. We note the following:

(i) There is no variable x ∈ x̄ and i 6= m such that [xi] 6= [xm] and [xi], [xm] ∈ ȳmax.

Indeed, suppose there were such [xi], [xm]. Since Gβ |ȳ is connected, there is a

path from [xi] to [x j] in Gβ |ȳ. Since (Γ,∀ȳϕ f) is feedback free, the path must go through

a class [t] ∈ ȳ, whose span strictly includes the spans of both [xi] and [x j]. Since by defi-

nition of ȳmax the spans of [xi] and [xm] are distinct, the inclusion is strict, contradicting

the maximality of the spans of [xi] and [x j].

Note that, as a consequence of (i):

52

(ii) The size of ȳmax is bounded by k.

Now let v̄ = ȳ− ȳmax and consider Gβ |v̄. Let H1, . . . ,Hc be its connected com-

ponents. For each r ∈ [1,c] let ȳr be the set of nodes of Hr and let βr be the formula

consisting of the conjunction of the literals in β using only variables in s̄∪ ȳmax∪ ȳr. We

claim that:

(iii) ∃ȳβ is equivalent to the formula ∃ȳmax(
∧

1≤r≤c∃ȳr(βr))

To see that (iii) holds, note first that each literal of β belongs to some βr. Also,

ȳ = ȳmax∪
⋃

1≤r≤c ȳr. Finally, distinct βr have no variables in common besides those in

s̄∪ ȳmax.

Now consider a formula ∃ȳrβr. The graph Gβr
|ȳr equals Hr so is connected by

construction. Consider w(ȳr). Since ȳmax contains variables covering all maximal spans,

for each i such that x ∈ x̄ and [xi] ∈ v̄r, there exists v ∈ x̄, v 6= x, such that [vi] ∈ ȳmax.

It follows that w(ȳr) ≤ w(ȳ)− 1. Thus, we can apply the induction hypothesis and

∃ȳrβr can be rewritten with quantifier rank at most k·w(ȳr). It follows that ∃ȳβ can be

rewritten with quantifier rank at most |ȳmax|+ k·max{w(ȳr) | 1 ≤ r ≤ c}. Since by (ii)

|ȳmax| ≤ k, this is bounded by k(1+(w(ȳ)−1) = k·w(ȳ).

In summary, we have shown that every formula ∃ȳβ where Gβ |ȳ is connected

can be rewritten with quantifier rank at most k·w(ȳ). Finally, consider [η j] = ∃[z̄][ξ].

Similarly to the induction step, consider the connected components H1, . . . ,Hc of G j|[z̄].

For each r ∈ [1,c] let ȳr be the set of nodes of Hr and let ξr be the formula consisting

of the conjunction of the literals in ξ using only variables in [x̄ j]∪ ȳr. It is clear that

[η j] is equivalent to the formula
∧

1≤r≤c∃ȳr(ξr). By construction, the graph Gξr
|ȳr is

connected for each r, so by the above ∃ȳr(ξr) can be rewritten with quantifier rank

bounded by k·w(ȳr)≤ k2 for each r. It follows that [η j] can be rewritten with the same

quantifier rank k2.

Recall that we have assumed that all formulas ψi are quantifier free. If ∃FO for-

mulas are used in Γ, the above construction can be extended as follows. First, associate

to each maximal subformula α used in Γ such that α(ū) = ∃v̄γ(v̄, ū), where ū are the

free variables, a new relation symbol Rα of arity |ū|, and replace in Γ each occurrence

53

of α(ū) by Rα(ū)∧ eq(ū), where eq(ū) is the conjunction of all equalities among vari-

ables in ū, resulting from taking the transitive closure of the equality graph of γ(v̄, ū).

The above construction then yields a CQ¬ formula of quantifier rank k2 over the aug-

mented vocabulary. Finally, replace each atom Rα(ū) by α(ū), yielding a CQ¬ formula

of quantifier rank k2 +q.

Finally, to obtain a formula equivalent to η j, we define η̄ j from η∗j as follows.

For each equivalence class e ∈ [x̄ j] let ve be an arbitrarily chosen variable in x̄ j such

that ve ∈ e. Let η̄(x̄ j) be obtained by substituting ve for each e in η∗([x̄ j]) and adding

the conjunction of all equalities {u = v | u,v ∈ x̄ j, [u] = [v]}. The quantifier rank of η̄ j

remains k2 +q and η̄ j is equivalent to η j. �

3.1.1 Reduced inherited constraints

It is well known that the number of formulas of given quantifier rank is finite, up

to logical equivalence. The notion of equivalence is in fact a strong syntactic one, upon

which we elaborate next. For every CQ¬ formula α , we can define a reduction proce-

dure yielding a logically equivalent formula red(α), obtained essentially by recursively

merging isomorphic subformulas. It can be seen that the number of distinct reduced

formulas of given quantifier rank d is bounded by a hyperexponential in d. This also

yields our upper bound for inherited constraints.

We elaborate briefly on the procedure for constructing red(α) for a CQ¬ formula

α . For each such α we first define a simplified representation of its syntax tree as a

forest ℑ(α) as follows (a tree consisting of root r and child subtrees t1, . . . , tn is denoted

r[t1, . . . , tn]):

• ℑ(L) = {L} for a literal L

• ℑ(β1∧β2) = ℑ(β1)∪ℑ(β2)

• ℑ(∃z(β)) = {z[ℑ(β)]}

Thus, all internal nodes of ℑ(α) are labeled by variables, and the leaves are

literals. We define by structural recursion a partial order ≺ and then an equivalence

relation ∼ on CQ¬ formulas that have the same free variables as follows. First, ≺ is

defined on trees as follows:

54

• for literals L1,L2, L1 ≺ L2 iff L1 = L2;

• for trees z1[F1],z2[F2] (where z1,z2 are variables and F1,F2 forests) let z be a new

variable. Then z1[F1] ≺ z2[F2] iff for each t1 ∈ F1 there exists t2 ∈ F2 such that

t1(z1← z)≺ t2(z2← z).

For CQ¬ formulas ϕ1 and ϕ2 with the same free variables, ϕ1≺ ϕ2 if for each t1 ∈ℑ(ϕ1)

there exists t2 ∈ ℑ(ϕ2) such that t1 ≺ t2. Finally, ϕ1 ∼ ϕ2 iff ϕ1 ≺ ϕ2 and ϕ2 ≺ ϕ1.

Example 3.1.4 The forest corresponding to

Q(y)∧∃x(R(x,y)∧P(y) ∧∃z(R(y,z)∧¬R(z,z))

∧∃u(R(y,u)∧¬R(u,u)))

is

[Q(y),x[R(x,y),P(y), z[R(y,z),¬R(z,z)],

u[R(y,u),¬R(u,u)]]]

�

We note the following property, immediate from the definition.

Lemma 3.1.5. If ϕ1 ∼ ϕ2 then ϕ1 and ϕ2 are equivalent.

Using the above, we define a normal form for CQ¬ formulas as follows. For each

α , the reduced formula red(α) is obtained by eliminating multiple equivalent sibling

subtrees, i.e. retaining only one representative of each equivalence class of ∼ among all

sibling subtrees.

Example 3.1.6 In the forest of Example 3.1.4, the subtrees rooted at vari-

ables z and u are ∼-equivalent, and the reduced formula has the forest

[Q(y),x[R(x,y),P(y),z[R(y,z),¬R(z,z)]]]. �

We observe the following.

Lemma 3.1.7. For CQ¬ formulas ϕ1,ϕ2, ϕ1 ∼ ϕ2 iff red(ϕ1) = red(ϕ2).

55

In particular, α ∼ red(α) and α is equivalent to red(α).

We denote by Hyp the class of hyperexponential functions. Each function in

Hyp is defined inductively by hyp(0) = 1 and hyp(n+1) = 2c·hyp(n) for some constant

c.

Lemma 3.1.8. Let Γ and ∀ȳϕ f be as above. The number of distinct reduced inherited

constraints in configurations of symbolic runs is bounded by h(k2) for some h ∈ Hyp.

Proof: By Lemma 2.2.3 it follows that there exists Γ′ with k+ |ȳ| artifact variables such

that Γ |= ∀ȳϕ f iff Γ′ |= ϕ f . However, the variables in ȳ are used in Γ′ in a very limited

way, and do not contribute to the quantifier rank of inherited constraints. Indeed, in

every inherited constraint η j there is a unique equivalence class for every y ∈ ȳ, which

occurs free in η j. The construction in Lemma 3.1.3 then yields a rewriting η∗j of η j with

quantifier rank k2 over a fixed vocabulary consisting of the relations in DB and C used

in Γ and ϕ f , as well as the new relations Rα for maximal formulas α used in Γ that have

existential quantifications (see above). This in turn yields the hyperexponential bound

in k2. �

Symbolic lassos We next use the finiteness of the reduced inherited constraints to char-

acterize the existence of symbolic runs satisfying ¬ϕ f using finite prefixes of a certain

form, which we call symbolic lassos. Let B¬ϕ be the Büchi automaton corresponding to

¬ϕ . Recall that, for a symbolic run {ψi}i≥0, we denote by {σi}i≥0 the sequence of truth

assignments to propositions P in ϕ such that σi(p) holds iff ϕi |= f (p). A run of B¬ϕ

on {σi}i≥0 is a sequence {qi}i≥0 of states of B¬ϕ such that (init,σ0,q0) is a transition of

B¬ϕ for some initial state init and (qi,σi+1,qi+1) is a transition of B¬ϕ for each i≥ 0. A

similar definition of run applies to finite sequences {σi}i≤l .

Definition 3.1.9. A symbolic lasso is a finite prefix {ψi}i< j+n of a symbolic run such

that:

• red(η∗j) = red(η∗j+n),

• for each u,v ∈ x̄, [u j] = [v j] iff [u j+n] = [v j+n],

• for each u ∈ x̄, [u j] = [u j+n] or [u j] 6= [v j+n] for each v ∈ x̄,

56

• there exists a run {qi}i≤ j+n of B¬ϕ on {σi}i≤ j+n such that for some accepting

state r, q j = q j+n = r.

We can show the following.

Lemma 3.1.10. There exists a run of Γ satisfying ¬ϕ f iff there exists a satisfiable sym-

bolic lasso.

Proof: For the only-if part, suppose there is a run satisfying ¬ϕ f . By Lemma 3.1.1,

there exists a satisfiable symbolic run {ψi}i≥0 whose corresponding sequence {σi}i≥0

of truth assignments to P is accepted by B¬ϕ . Thus, there exists an accepting run {qi}i≥0

of B¬ϕ on {σi}i≥0. Let r be an accepting state of B¬ϕ occurring infinitely often in the

run. Since there are finitely many inherited constraints there exists an infinite subset I

of integers such that red(η∗j) is the same for all j ∈ I and q j = r for all j ∈ I. A simple

pigeonhole argument further shows that there is an infinite subset J of I for which:

• for each u,v ∈ x̄, [u j1] = [v j1] iff [u j2] = [v j2] for all j1, j2 ∈ J, and

• for each u ∈ x̄ and j1, j2 ∈ J, [u j1] = [u j2] or [u j1] 6= [v j2] for all v ∈ x̄.

Now pick arbitrary j, j+n ∈ J. Clearly, {ψi}i< j+n is satisfiable and is a symbolic lasso.

Consider the if part. Let λ = {ψi}i< j+n be a satisfiable symbolic lasso. Let D be

an instance of DB for which RunsD(λ) 6= /0. We show that

(†) there exists {ρi}i≤ j+n ∈ RunsD(λ) such that ρ j = ρ j+n.

Observe that (†) suffices to establish the if part of the lemma. Indeed, if (†)

holds then the sequence {ρi}i≤ j({ρi} j<i≤ j+n)
ω is an actual run on D of the symbolic

run {ψi}i≤ j({ψi} j<i≤ j+n)
ω , which satisfies ¬ϕ f .

Consider (†). Let ȳ consist of the variables y ∈ x̄ such that [y j] = [y j+n] and let

v̄ = x̄ − ȳ. Consider η j(ȳ j, v̄ j). Intuitively, ȳ consist of the variables that are preserved

from configuration j to j+n, while v̄ j and v̄ j+n are only related via ȳ. This together with

the fact that red(η∗j (x̄)) = red(η∗j+n(x̄)) will allow us to generate an actual run with the

same configurations at j and j+n.

We next make this argument more precise. Recall the construction in the proof of

Lemma 3.1.3. Consider [η j+n], with the augmented set of free variables [ȳ], [v̄ j], [v̄ j+n].

57

Let ū be its quantified variables. Let G = G j+n and consider η∗j+n. Note first that,

because of feedback-freedom, [v̄ j] and [v̄ j+n] occur in distinct connected components

of G|(ū∪ [v̄ j]∪ [v̄ j+n]) (indeed, any path connecting a node in [v̄ j] to a node in [v̄ j+n]

must go through a variable in [ȳ]). Let H j consist of the connected components of

G|(ū∪ [v̄ j]∪ [v̄ j+n]) containing nodes in [v̄ j], and H j+n consist of those containing nodes

in [v̄ j+n]. Let χ j([ȳ], [v̄ j]) and χ j+n([ȳ], [v̄ j+n]) be the subformulas of [η j+n] containing

variables in [ȳ] and in H j and H j+n, respectively.

Consider now [η j]([ȳ], [v̄ j]) and let K j be the subgraph of G j consisting of the

connected components of G j|(s̄∪ [v̄ j]), that contain nodes in [v̄ j], where s̄ are the quan-

tified variables of [η j]. Let ξ j([ȳ], [v̄ j]) be the subformula of [η j] containing nodes in

[ȳ] and K j. As in the proof of Lemma 3.1.3, one can construct formulas χ∗j ([ȳ], [v̄ j]),

χ∗j+n([ȳ], [v̄ j+n]) and ξ ∗j ([ȳ], [v̄ j]).

Intuitively, ξ ∗j ([ȳ], [v̄ j]) is the component of the inherited constraint η∗j constraining [v̄ j]

and [ȳ]. Similarly, χ∗j+n([ȳ], [v̄ j+n]) plays the same role in the inherited constraint η∗j+n.

From the fact that red(η∗j ([x̄])) = red(η∗j+n([x̄])), it easily follows that

red(ξ ∗j ([x̄])) = red(χ∗j+n([x̄])). In particular, ξ ∗j ([x̄])∼ χ∗j+n([x̄]).

Now consider how the formulas ξ ∗j ([ȳ], [v̄ j]) and χ∗j ([ȳ], [v̄ j]) differ. Intuitively,

χ∗j adds to ξ ∗j additional constraints imposed by the segment of λ between configuration

j and j+n. Specifically, it is easily seen that

(‡) χ∗j ([ȳ], [v̄ j]) = ξ ∗j ([ȳ], [v̄ j])∧µ([ȳ], [v̄ j])

for some CQ¬ formula µ .

Consider a run ρ = {ρi}i≤ j+n ∈ RunsD(λ). Let µ be the assignment to the

variables in λ yielding ρ . We denote by [µ] the assignment to equivalence classes

defined by [µ]([yi]) = µ(yi) for each y ∈ x̄ and i ≤ j + n (this is well defined because

µ must satisfy all formulas in λ , including the equalities). We modify µ as follows,

yielding a new assignment ν . The assignment ν is the same as µ for all variables v

for which [v] is not in H j+n. From (‡) it follows that D∪C |= ξ ∗j ([µ]([x̄ j])). Since

ξ ∗j ([x̄]) ∼ χ∗j+n([x̄]), it follows that D∪C |= χ∗j+n([µ]([x̄ j])). Let ν be defined on the

variables in H j+n by setting ν(x̄ j+n) = µ(x̄ j) and extending [µ]([x̄ j]) to all variables in

H j+n by a choice of witnesses to the quantified variables in χ∗j+n satisfying all quantifier-

free subformulas of χ∗j+n. It is clear that D∪C |= ψi(ν(x̄i, x̄i+1)) for each i < j+n. It

58

follows that {ν(x̄i)}i≤ j+n is in RunsD(λ). By construction, ν(x̄ j) = ν(x̄ j+n) so the run

satisfies (†). �

Decision procedure The above development provides a decision procedure for

satisfaction of LTL-FO properties of feedback-free systems, which we outline next. Re-

call that the LTL-FO property can be assumed to have no global variables by Lemma

2.2.3. The input to the algorithm is an artifact system Γ = 〈A ,Σ,Π〉 and LTL-FO prop-

erty ϕ f over A such that (Γ,ϕ f) is feedback-free. We begin by constructing the sets of

formulas ∆ = ∆Σ∪∆ϕ f and the Büchi automaton B¬ϕ . We use a procedure Büchi-Next

which, given a state p of B¬ϕ and a truth assignment σ to the propositions of ϕ returns

one next state of B¬ϕ .

The algorithm non-deterministically searches for a satisfiable symbolic lasso as

follows:

1. flag := 0;

2. initialize a symbolic run prefix ρ to {ψ0}, with corresponding truth assignment σ0

to the propositions of ϕ and set s to some output of Büchi-Next(q0,σ0) for some

initial state q0 of B¬ϕ ;

3. set γ to red(η∗(ρ)), where η(ρ) is the inherited constraint for the prefix ρ;

4. initialize the set R of reduced configurations to {(s,γ)};

5. if flag = 0 and s is an accepting state of B¬ϕ then non-deterministically continue

or set (s̄, γ̄) := (s,γ), flag:= 1, and R := /0;

6. non-deterministically generate from ∆ a symbolic transition ψ with corresponding

truth assignment σ to the propositions in ϕ;

7. set s to Büchi-Next(s,σ), γ := red(η∗(ρψ)), and ρ := ρ.ψ;

8. if (s,γ) ∈R then output NO and stop; otherwise, set

R := R ∪{(s,γ)};

9. if flag = 1, (s,γ) = (s̄, γ̄), and γ̄ is satisfiable, output YES and stop. Otherwise, go

to 5.

59

To see that this provides a decision procedure, we need to show that (i) it termi-

nates and provides the correct answer (i.e. it outputs YES on some execution on (Γ,ϕ f)

iff Γ |= ϕ f), and (ii) the satisfiability test in step 9 is effective.

To see (i), note that, from the definition of inherited constraint η(ρ) and the

equivalence with red(η∗(ρ)), it follows that:

(§) if ρ1,ρ2 are satisfiable prefixes of symbolic runs such that

red(η∗(ρ1)) = red(η∗(ρ2)) and ψ is a symbolic transition, then

• ρ1.ψ is satisfiable iff ρ2.ψ is satisfiable, and

• the sets of non-deterministically constructed

red(η∗(ρ1.ψ)) and red(η∗(ρ2.ψ)) are equal.

This means that the search for a symbolic lasso can be confined to prefixes with no

repeated configurations (s,γ) apart from the knot (s̄, γ̄), which is enforced by step 8.

Since there are finitely many reduced inherited constraints for symbolic runs of (Γ,ϕ f)

this bounds the running time of the above procedure.

For (ii), we discuss the procedure for checking satisfiability of reduced inherited

constraints.

We show that satisfiability of a CQ¬ formula over DB∪C can be decided in a

modular fashion, by independently checking satisfiability of formulas over DB and over

C . The significance of the result is that it enables a generic model checking algorithm

that takes as parameter the fixed interpretation of C , as long as it comes with a domain-

specific satisfiability checker SATC . SATC is called as a black box by the model checker.

More precisely, let q be a prenex normal form CQ¬ formula over DB∪C : q =

∃z̄ξ (ū) where ξ is quantifier-free, of free variables ū (z̄⊆ ū). Let ξ |DB and ξ |C be the

restrictions of ξ to schemas DB and C , respectively, and denote with ȳ= vars(ξ |DB)∩

vars(ξ |C) the variables they have in common. Denote with c̄ all constants appearing in

ξ |DB. Recall that an equality type eq(t̄) over a set t̄ of terms (variables or constants) is

a satisfiable conjunction of equality and non-equality atoms over t̄ such that every pair

of terms from t̄ occurs in some atom of eq. The following claim follows immediately

from the preservation of CQ¬ formulas under isomorphisms:

60

(‡) q is satisfiable if and only if there exists an equality type eq(ȳ, c̄), such that ξ |C ∧

eq(ȳ, c̄) and ξ |DB ∧ eq(ȳ, c̄) are satisfiable.

Notice that the satisfiability check for ξ |C ∧ eq(ȳ, c̄) in the claim is domain-

specific (i.e. depends on the fixed interpretation of C), being settled by calling SATC .

Also recall that ξ |DB ∧ eq(ȳ, c̄) is an existentially-quantified formula. Therefore its sat-

isfiability reduces to checking that: (a) no pair of terms appears both in an equality and

a non-equality atom, and (b) no tuple of terms appears both in a positive and a negative

literal with the same relational symbol. This establishes decidability of verification for

LTL-FO properties of feedback-free systems, completing the proof of Theorem 3.0.1.

3.1.2 Complexity

The complexity analysis of the decision procedure involves several orthogonal

components:

Computing reduced inherited constraints This involves the recursive construction in

the proof of Lemma 3.1.3. It is easily seen that it requires polynomial time in the size of

inherited constraint γ , which is bounded by the size of the the symbolic run prefix ρ .

Performing the satisfiability check (in step 9 of the decision procedure), which con-

sists in

(i) Retrieving the prenex normal form of γ̄ , which is η(ρ), then guessing an equality

type eq on the number of variables η(ρ)|C and η(ρ)|DB have in common, and

the number of constants mentioned in η(ρ)|DB. This can be done in NP in the

number of common variables and of constants, which is bounded by the size of

η(ρ).

(ii) Running SATC on η(ρ)|C ∧ eq. This step depends on the fixed interpretation

of C . If C is interpreted as linear arithmetic inequalities, the test reduces to

solving a linear programming problem. This yields polynomial time in the size of

η(ρ)|C ∧ eq [Kar84], which in turn is polynomially (quadratically) bounded by

the size of η(ρ). Indeed, each pair of terms in η(ρ)|C must be related explicitly

in eq by either an equality or a non-equality atom.

61

(iii) Checking satisfiability of η(ρ)|DB ∧ eq. This is doable in polynomial time in the

size of η(ρ)|DB ∧ eq, which is again polynomially bounded by the size of η(ρ).

The search for the symbolic lasso This step is polynomial in the number of reduced

inherited constraints and the states of B¬ϕ visited during the search. The test that the

current inherited constraint γ is the same as the knot candidate γ̄ is polynomial in the

size of γ̄ .

Since the size of reduced inherited constraints γ is upper bounded by the length

of the run ρ , which in turn is bounded by the number of distinct reduced inherited

constraints, by Lemma 3.1.3 we obtain:

Proposition 3.1.11. Static verification for feedback-free pairs of LTL-FO properties and

artifact systems is decidable in time upper bounded by h(k2), for some h ∈ Hyp.

3.1.3 Subclasses with Improved Upper Bounds

The above analysis shows that the complexity of the decision procedure is dom-

inated by the number of distinct inherited constraints, which upper bounds the symbolic

run length. We identify next three sub-classes of feedback-free artifact systems that

occur naturally and lead to a better bound.

Bounded width The construction in the proof of Lemma 3.1.3 introduces the useful

notion of width of a set of variables in a symbolic run. Recall that the width w(ȳ) of

ȳ is defined as max{|v̄| | v̄ ⊆ x̄i, and each v ∈ v̄ is in an equivalence class y ∈ ȳ}. By

extension, the width of a subgraph of G j is the width of its set of nodes.

Definition 3.1.12. We say that (Γ,ϕ f) has width bounded by w if it is feedback-free, and

if for each symbolic run, the width of each connected component of G j is bounded by w

for each j ≥ 0.

Intuitively, the width bound indicates the maximum number of variables in x̄ that

are mutually related in a configuration of a symbolic run. We can show the following.

Corollary 3.1.13. If (Γ,ϕ f) has width bounded by w, then the number of distinct re-

duced inherited constraints is bounded by (h(w2))k, where h ∈ Hyp.

62

Proof: The bound is an immediate consequence of the construction in the proof of

Lemma 3.1.3, and the fact that constraints corresponding to distinct connected compo-

nents of G j are independent. �

Thus, Corollary 3.1.13 provides a smaller bound on the number of reduced in-

herited constraints if the connected components generated in symbolic runs have small

width.

Linear propagation An artifact system and a property exhibit linear propagation if

the feedback-freedom restriction is satisfied for a more restrictive definition of variable

equivalence classes. Equivalence classes are generated exclusively by equalities of the

form x = x′, and any other equalities are treated as arithmetic constraints.

Note that every linear-propagation equivalence class involves the values of a

single variable. In the graphical representation of symbolic transition templates and

runs, all equality edges are horizontal. This is the case in our running example.

Proposition 3.1.14. Let (Γ,ϕ f) exhibit linear propagation. The number of distinct re-

duced inherited constraints in configurations of symbolic runs is bounded by h(k), for

some function h ∈ Hyp.

Proof: We claim that the quantifier rank of inherited consrtaints is bounded by k, which

immediately implies the upper bound in the proposition’s statement.

The proof is similar to the proof of Lemma 3.1.3, except the induction shows that

β can be rewritten with quantifier rank bounded by f p(ȳ), with f p defined as follows.

In the notation of the proof of Lemma 3.1.3, define the footprint of ȳ in Gβ |ȳ as

the set of artifact variables whose values appear in the equivalence classes ȳ: f p(ȳ) =

{x|x ∈ x̄,y ∈ ȳ, [xi] ∈ y for some i}. Clearly, | f p(ȳ)| ≤ k.

We prove by induction on the size of f p(ȳ) that the formula corresponding to

∃ȳβ (ȳ, s̄) can be rewritten with quantifier rank bounded by | f p(ȳ)|. As in the proof of

Lemma 3.1.3, consider v̄ = ȳ − ȳmax, and let H1, . . . ,Hc be the connected components

of Gβ |v̄ and ȳr the set of nodes on Hr, for all 1≤ r ≤ c.

Now observe that linear propagation ensures that each equivalence class consists

of successive values of the same variable, [y] = {yl|l ∈ span([y])}. Also observe that,

if [xi] ∈ ȳmax, then for all l and all 1 ≤ r ≤ c, [xl] 6∈ ȳr (otherwise the span maximality

63

of ȳmax is contradicted). It follows that f p(ȳr) ⊆ f p(ȳ) − f p(ȳmax), so | f p(ȳr)| ≤

| f p(ȳ)| − | f p(ȳmax)|, and the induction hypothesis applies to each Hr. �

Corollary 3.1.15. If linear-propagation pair (Γ,ϕ f) has width bounded by w, then there

are at most (h(w))k distinct reduced inherited constraints, for some h ∈ Hyp.

Proof: The proof follows immediately from Proposition 3.1.14 and the observation that

constraints corresponding to distinct connected components are independent. �

Acyclicity Recall that feedback-freedom restricts the way in which the value of variable

x at step j can be connected to the value of x at preceding step i. We investigate a more

stringent restriction, which disallows any such connection (except for preservation of

the value of x from i to j).

Definition 3.1.16. (Γ,ϕ f) is acyclic iff for every symbolic run prefix ρ = {ψi}i≤n, if xi

and x j are connected in Gρ , then [xi] = [x j].

Note that acyclicity trivially implies feedback-freedom: in Definition 2.3.2, the

role of y is played by xi.

Proposition 3.1.17. Let (Γ,ϕ f) be acyclic. The number of distinct reduced inher-

ited constraints in configurations of the same symbolic run is bounded by a doubly-

exponential function of k.

Proof: We recall from the proof of Lemma 3.1.3 the notation G j for the graph on equiv-

alence classes corresponding to symbolic run prefix ρ| j. We also extend the notion of

span beyond equivalence classes to arbitrary subgraphs of G j, in the natural way.

We claim that any connected component H of G j has at most k distinct equiva-

lence classes.

Indeed, given an equivalence class [e] in H, denote with

vars([e]) = {x|x ∈ x̄, l ∈ span([e]),xl ∈ [e]},

i.e. the set of artifact variables whose value belongs to [e] at some step. Observe that

acyclicity implies that there is no i, j ∈ span(H) with [xi] 6= [x j] in H. Therefore, the

equivalence classes in H have pairwise disjoint vars sets. This implies the claim.

64

By the claim, the corresponding sub-formula of the inherited constraint can be

written using at most k variables. These are free if the span of their equivalence class

includes j, and existentially quantified otherwise.

The number of distinct inherited constraints corresponding to connected com-

ponents of G j can be upper bounded as follows. By the claim, the number of dis-

tinct literals over k variables is upper bounded by (2|DB ∪C |)k (where |DB ∪C |

denotes the sum of the arities of the relation in DB∪C). The number of distinct con-

junctions thereof is bounded by 22|DB∪C |k . Since the number of distinct choices for

the subset of existentially quantified variables is bounded by 2k, we obtain a bound of

N = 2k(2|DB∪C |k) on the number of distinct inherited constraint sub-formulas that cor-

respond to connected components.

The proposition now follows from the above upper bound and the observa-

tion that the independence of connected components allows re-using variables across

them. �

To illustrate the difference between acyclicity and feedback freedom, consider

again our running example. As discussed earlier, feedback freedom allows changing the

shipment type unboundedly many times for the same product. In contrast, acyclicity

disallows such runs. If the customer wants to change the shipment type, she must forget

all her choices and starts filling the order from scratch (select a product again, then a

shipment type). This puts the two shipment type choices in disconnected components

of the computation graph.

3.2 Introducing Dependencies

We show next that model checking for feedback-free pairs of LTL-FO properties

and artifact systems is decidable even in the presence of expressive database integrity

constraints modeled by dependencies.

Given a set I of dependencies on the database schema DB, we say that an

artifact system Γ satisfies an LTL-FO sentence ϕ under I , denoted Γ |=I ϕ , if for

every database D satisfying I and every run ρ of Γ on D, ϕ holds on ρ .

We next establish decidability under a set of dependencies, provided that the

65

chase with these dependencies terminates. The chase is a fundamental algorithm that

has been widely used in databases. It takes as input an initial instance A and a set of

dependencies I and produces (if it terminates, which is not guaranteed), a finite model

of I and A that satisfies a universality property (see [AHV95] for details).

3.2.1 Relevant Chase Properties

The chase [AHV95] is a fundamental algorithm that has been widely used in

databases. It takes as input an initial instance A and a set of dependencies I and, if it

terminates (which is not guaranteed), its result is a finite instance U satisfying:

(a) U is a model of I and A

(we say that U is a model of I and A if U satisfies the dependencies I and there is a

homomorphism from A to U), and

(b) U is universal for I and A: that is, it has a homomorphism into every model of

I and A.

We call a finite instance with these properties a universal model for I and A.

At every chase step, the algorithm identifies a violation of some dependency in

I and modifies A to remove this violation (the modification is minimal in a certain

sense, and it possibly introduces new violations). When several violations exist, the

choice of the one to remove is non-deterministic, and the sequence of such choices

induces a sequence of chase steps, called a chase sequence. The sequence is terminating

if it reaches an instance that satisfies I .

We recall from [DNR08] an extension of the chase to disjunctive embedded de-

pendencies (DEDs). Here, we are only interested in the particular case when the DED

conclusion consists of the empty (always false) disjunction ⊥. As soon as a chase step

derives ⊥, the chase sequence terminates, yielding the result ⊥. We then say that the

chase fails. A terminating chase sequence is a finite sequence of chase steps which either

fails or yields an instance that satisfies all dependencies.

66

3.2.2 Verification With Dependencies

We borrow from [MSWL10] the notation CT∀∃ for the class of dependency sets

I such that for every instance A there exists a terminating chase sequence of A with I .

Theorem 3.2.1. It is decidable, given artifact system Γ and an LTL-FO sentence ∀ȳϕ f

such that (Γ,∀ȳϕ f) is feedback-free, and given set I ∈ CT∀∃ of dependencies on DB,

whether Γ satisfies ∀ȳϕ f under I .

While membership of a set of dependencies in CT∀∃ is in general known to be

undecidable (see for instance [DNR08]), recent research has proposed sufficient syntac-

tic restrictions. Examples include weak acyclicity [FKMP03], stratification [DNR08],

and the termination hierarchy [MSWL10] which is a hierarchy of successive relaxations

of weak acyclicity and stratification that nevertheless suffice for the existence of a ter-

minating chase sequence.

Corollary 3.2.2. If I lies in the terminaton hierarchy and

(Γ,∀ȳϕ f) is feedback-free, then Γ |=I ∀ȳϕ f is decidable.

The proof of Theorem 3.2.1 is given after introducing a few useful definitions

and results.

Let q(ū) be a CQ¬ formula over DB∪C with free variables ū. We say that q is

I -satisfiable if there exists D |= I and a valuation ν of ū such that D∪C |= q(ν). We

say that symbolic run ρ is I -satisfiable if there exists D |= I such that RunsD(ρ) 6=

/0. The definition extends naturally to prefixes of symbolic runs, and in particular to

symbolic lassos.

Decision procedure The decision procedure we exhibit in proving Theorem 3.2.1 is

the one presented in Section 3.1 for the dependency-free case, modified as follows: in

step 9, the test of satisfiability of γ̄ is replaced with an I -satisfiability test.

The remainder of the section outlines the proof that the above modification

yields a decision procedure for model checking under dependencies, provided that the

set of dependencies lies in the termination hierarchy.

67

We extend Claim (‡) from Section 3.1 to the presence of dependencies. We first

show that I -satisfiability of a CQ¬ formula over DB∪C can be decided in a modular

fashion, by independently checking satisfiability of formulas over DB and over C .

More precisely, let q be a prenex normal form CQ¬ formula over DB∪C : q =

∃z̄ξ (ū) where ξ is quantifier-free, of free variables ū (z̄⊆ ū). Let ξ |DB and ξ |C be the

restrictions of ξ to schemas DB and C , respectively, and denote with ȳ= vars(ξ |DB)∩

vars(ξ |C) the variables they have in common. Denote with c̄ all constants appearing in

ξ |DB or I .

Lemma 3.2.3. q is I -satisfiable if and only if there exists an equality type eq(ȳ, c̄), such

that ξ |C ∧ eq(ȳ, c̄) is satisfiable and ξ |DB ∧ eq(ȳ, c̄) is I -satisfiable.

Proof: Let’s denote the fact that there is a chase sequence s from q to q′ with q
s
⇒ q′.

(i) If I ∈CT∀∃, then there is a terminating chase sequence s1 of q. By definition,

s1 is finite and if q
s1⇒ q′, q′ satisfies all dependencies in I (as I does not mention ⊥).

Observe that the chase steps with dependencies from IDB only introduce ⊥,

which is not mentioned in I . Therefore, chase steps with dependencies from IDB

cannot enable chase steps with dependencies from I . Also observe that the chase with

IDB must terminate after at most one step (either no dependency in IDB applies, or if

one applies, then the chase fails).

Let s2 be a chase sequence with IDB such that q′
s2⇒ q′′. By the above observa-

tion, s2 is terminating, and has length at most 1. If the length is 0, then q′′ = q′, so q′′

satisfies I ∪IDB. If the length is 1, then q′′ =⊥, and the chase fails. Therefore s1,s2

is a terminating chase sequence with I ∪IDB, thus witnessing that I ∪IDB ∈CT∀∃.

(ii) By (i), there is a terminating chase sequence s of q with I ∪∆DB. Denote

with s|i the prefix of length i of s, with si the i’th chase step, and with qi the result of the

first i chase steps: q
s|i
⇒ qi.

If s does not fail, then the result of s, when viewed as an instance, witnesses

satisfiability.

Suppose that the chase fails. Then we prove by contradiction that there is no

model that satisfies q and I .

For assume that such a model D exists. Let n be the length of s. Since the chase

fails, and failure must occur after the first application of any dependency in IDB, s|n−1

68

uses only dependencies from I , and sn must use a dependency δ ∈IDB. The premise

of δ must map homomorphically into qn−1. Call this homomorphism h.

Moreover, let q = q−∧q+, where q− is the subquery of q consisting of all nega-

tive literals, and q+ the subquery consisting of all positive literals.

Since I mentions only positive literals, the first n−1 chase steps apply only to

q+, so q−n−1 = q− and q+
s|n−1
⇒ q+n−1. Recall that the premise of all dependencies in IDB

consists of a positive literal L and its negation ¬L. In particular it follows that h maps L

into q+n−1, and ¬L into q−.

Notice that the chase of q+ is standard, involving a positive conjunctive query

and positive dependencies. It is known (see [AHV95] for instance) that the standard

chase preserves universality. In particular, this means that for every 1 ≤ i ≤ n− 1, q+i

has a homomorphic mapping into every instance that satisfies q+ and I . In particular,

there is a homomorpism m from q+n−1 into D.

But then D must contain an image of L under h◦m, which leads to a contradic-

tion: since D satisfies all of q, it must satisfy ¬h◦m(L) and h◦m(L) simultaneously. �

As observed in Section 3.1, the satisfiability check for ξ |C ∧ eq(ȳ, c̄) in

Lemma 3.2.3 is domain-specific (i.e. depends on the fixed interpretation of C), being

settled by calling SATC .

We next show that I -satisfiability of formulas over DB reduces to chasing

with I and an appropriately selected set IDB of dependencies whose construction is

determined by the schema DB.

We recall from [DNR08] an extension of the chase to disjunctive embedded de-

pendencies (DEDs). Here, we are only interested in the particular case when the DED

conclusion consists of the empty (always false) disjunction ⊥. As soon as a chase step

derives ⊥, the chase sequence terminates, yielding the result ⊥. We then say that the

chase fails. A terminating chase sequence is a finite sequence of chase steps which either

fails or yields an instance that satisfies all dependencies.

Define the set of dependencies

IDB := {δ 6=}∪{δ
P
¬ | P ∈DB}

69

where

δ 6= : ∀x∀y x = y∧ x 6= y→⊥

δ P
¬ : ∀x̄ P(x̄)∧¬P(x̄)→⊥.

Lemma 3.2.4. If I ∈ CT∀∃, then

(i) I ∪IDB ∈ CT∀∃, and

(ii) a formula q ∈ CQ¬ over DB is I -satisfiable if and only if the chase of q with

I ∪IDB does not fail.

Remark 3.2.5. We could have applied the more general decision procedure

from [DNR08], for satisfiability of CQ¬ under a set of dependencies with negated lit-

erals. The result in [DNR08] is based on chasing with more expressive, disjunctive de-

pendencies, yielding a tree of chase sequences. When applied to our setting, this would

result in an exponential number of chase sequences. Lemma 3.2.4 shows that this ex-

ponential blow-up can be avoided by resorting to the standard (non-disjunctive) chase,

and by exploiting the fact that the dependencies in I contain only positive literals.

The following result establishes the decidability of I -satisfiability for finite pre-

fixes of symbolic runs.

Lemma 3.2.6. It is decidable, given a symbolic run prefix ρ and I ∈ CT∀∃ on DB,

whether ρ is I -satisfiable.

Proof: Lemmas 3.1.2, 3.2.3 and 3.2.4 imply that the following is a decision procedure

for I -satisfiability of ρ . Let ηn be the inherited constraint for configuration n of ρ (in

prenex normal form), and ξ be its quantifier-free body. Let ξ |DB, ξ |C , ȳ, c̄, eq be as in

Lemma 3.2.3, and IDB as in Lemma 3.2.4. Return YES if and only if SATC returns

YES on ξ |C ∧ eq and the chase of ξ |DB ∧ eq with I ∪IDB does not fail. �

Complexity The complexity upper bound obained in the absence of dependencies is

virtually unaffected by the presence of sets of dependencies from the termination hier-

archy.

70

First, recall that the satisfiability check for the restiction of the inherited con-

straints to C is settled by calling SATC , thus inheriting the complexity of the particular

instantiation of C .

Second, the complexity of the I -satisfiability check for the inherited constraints

restricted to DB inherits the complexity of the chase with sets of dependencies from

the termination hierarchy.

This complexity is polynomial in the size of the inherited constraint, with the

polynomial’s degree bounded by the size of I [MSWL10, DNR08, FKMP03]. The

bound is very conservative, and a refined analysis shows that it depends on the longest

path in a graph that reflects how a chase step with one dependency can trigger another.

Given that we expect multiple verification instances over the same database

schema with integrity constraints, a reasonable assumption (often adopted in the lit-

erature) is to consider schema and dependencies fixed. This yields a truly polyno-

mial complexity of the chase. The same truly polynomial complexity holds, even if

DB and I are not fixed, if the dependencies in I are equality-generating dependen-

cies [AHV95]. It also holds if only DB is fixed but not I , if it consists only of full

dependencies [AHV95]. Equality-generating dependencies allow only equality atoms

in the conclusion, and capture as particular cases the class of functional dependencies.

Full dependencies contain no existentially quantified variables.

Acknowledgement

Alin Deutsch and Victor Vianu co-authored this chapter.

4 Improved complexity upper bounds

with key dependencies

The verification technique presented in Chapter 3 extends the allowed expres-

sivity of business process specifications to the use of generic data dependencies and

arithmetic constraints. It does so, however, at the cost of a very worst-case complexity.

Moreover, and even more importantly, the technique retains its high worst-case com-

plexity even when no data dependencies or arithmetic is used (a case in which we are

aware of a PSPACE upper bound [DHPV09]).

In the present chapter we restrict the analysis to key dependencies and present an

alternative verification technique that, while based on the theory developed in Chapter

3, is an improvement for a number of aspects:

• it provides an EXPSPACE upper bound in the case of verification on feedback-

free artifact systems that contain no arithmetic and unary keys;

• it has a PSPACE upper bound in case of constant navigational complexity (an

interesting and common class of business processes);

• it allows us to relax the feedback-freedom definition;

• it allows graceful scaling of worst-case complexity, i.e. EXPSPACE for artifact

systems with unary keys, and, for artifact systems with arithmetic and generic

constraints, the upper bound is hyperexponential only in the cardinality of the

variables involved in arithmetic constraints.

In order to ease the presentation, we start introducing the main ideas by present-

ing a technique that performs verification on specifications with no keys and no arith-

71

72

metic in PSPACE. This technique does not introduce any new results, as [DHPV09]

already provides a way to check those properties. However, it introduces a way to

perform verification that will be the corner stone of our more general technique incor-

porating single-attribute keys.

In this chapter we will make use of the following naming conventions. We call

x̄i the variables in instant i. We denote as ηk
j the formula ∃z̄(η(〈ψi〉i≤k)), where z̄ is the

set of all variables in η(〈ψi〉) except x̄ j and x̄k. We then call [ηk
j] the formula that uses

the equivalence classes of the variables in ηk
j as variables (and thus have no equivalence

atoms). [ηk
j] is called cycle inherited constraints. Also, when clear from the context,

we use the term ‘inherited constraints’ both for standard and cycle inherited constraints,

and refer as ‘free variables’ to all variables that are not existentially quantified. In this

context we refer to x̄i as the equivalence classes of the variables in instant i. Also, we

assume for ease of presentation that symbolic transitions do not contain constants. The

extension for constants is easy, and does not change the computational complexity of

the technique presented. We will discuss the introduction of constants at the end of the

chapter.

4.1 Alternative technique for artifact systems with no

dependencies and no arithmetic

The technique is based on the following lemma.

Lemma 4.1.1. In an artifact system and property with only key constraints, there exists

a run ρ satisfying ¬ϕ iff

1. there exists a symbolic run prefix 〈ψi〉i< j+n s.t. [η]|
j+n
j (〈ψi〉i≤ j+n)∧ x̄ j = x̄ j+n is

satisfiable, and

2. for such 〈ψi〉i< j+n, there exists a run {qi}i≤ j+n of B¬ϕ on {σi}i≤ j+n (i.e. the run

of truth assignments for FO components in ¬ϕ given the run {ψi}i< j+n) such that

for some accepting state r. q j = q j+n = r.

Proof: Clearly, from the definition of inherited constraints, if we have a symbolic run

〈ψi〉i< j+n as above, there exists a run ρ satisfying ¬ϕ .

73

Now we assume we have a run ρ satisfying ¬ϕ . Note that, formally, let D be a

database instance for the artifact system, we have that ρ,D |= ¬ϕ . Let us consider the

infinite set of instants I in which ρi is in an accepting state r of B¬ϕ . Now ley us call e

an equality type between the attribute values in ρi. By pigeonhole principle there is an

infinite set of instants with the same equality type e. We call this set Ie. Now we call

D+ the set D∪{ω}. The we define the assignments νi : x̄→ D+ in the following way:

νi(x) = ρi(x), if ρi(x) ∈ D, and νi(x) = ω , otherwise. Since D is finite, it follows that

there are a finite number of possible νi. By pigeonhole principle there are an infinite

number of instants that share the same ν . We call Ie,ν the set of these instant. Let us

pick any ν .

Since all instants of Ie,ν share a single ν , any attribute x ∈ x̄ s.t. ν(x) = ω is

assigned to values not in D in all instants of Ie,ν . Let V (x) = {ρi(x)|i ∈ Ie,ν} be the set

of values assigned to an attribute x ∈ x̄. For all the x ∈ x̄ s.t. V (x) is finite, it is easy to

see that (by pigeonhole principle) we can restrinct the set of instants to the ones where

each attribute is assigned to the same value. Let ȳ be the set of these attributes, and let

µ be an assignment from ȳ to
⋃

y∈ȳV (y), we call Ie,ν ,µ the set of these instant.

Let us consider the attributes z̄ whose V (x) is infinite. Since the values in V (x),

x ∈ z̄ are not in D, it follows that the only way the artifact system can force them to be

distinct is using 6=-inequalities. Also, in each instant every value can be forced to be

different from at most 2|x̄|−1 possible values (using the primed and unprimed variables

in a postcondition). Since this set is finite, it follows that in [η] the variables associated

in the instant of Ie,ν ,µ to such attributes can be forced different to at most a finite number

of other values. Moreover, 6=-inequalities do not have any transitive property, it follows

that, since attributes in z̄ are associated to an infinite set of values we can find instants

in Ie,ν ,µ that are far enough such that [η] does not force them to be distinct. Let j and

k > j be such two instants. It follows that we can build a run ρ ′ from ρ by substituting all

values associated to the variables in the equivalence classes of x̄k with the corresponding

values in ρ j. More formally, for each x ∈ barx, for each x ∈ [x]k, ρ ′(x) = ρ(x j). It is

easy to see that, by construction, ρ ′ |= [η]|kj(〈ψi〉i≤k)∧ x̄ j = x̄k and since j,k ∈ I, they

also satisfy condition 2. �

74

The main idea is to explore all possible symbolic runs, while checking the above

conditions. Note that, in order to perform this search, it will not be necessary to compute

the whole inherited constraints for the symbolic run prefixes.

4.1.1 Reduced form of inherited constraints

The technique in Chapter 3 has an hyper-exponential upper bound because of

the size of inherited constraints in feedback free systems. The information in the inher-

ited constraints is necessary to check the existence of runs when we allow in business

process specification or in the properties either arithmetic constraints or a set of data

dependencies whose chase terminates. By limiting the expressivity, we are able to dis-

card information from the inherited constrains in order to reduce their number. The

main idea is that we only keep the information that we need to check satisfiability of

[η]|
j+n
j (〈ψi〉i≤ j+n)∧ x̄ j = x̄ j+n. Since we can check satisfiability by looking for contra-

diction proofs, we define the following concept.

Definition 4.1.2. Let [η]|
j+n
j (〈ψi〉i≤ j+n)∧ x̄ j = x̄ j+n be in prenex form. We call a no-

dep contradiction proof (or simply proof) w.r.t. j, j+ n, a set of the atoms in [η] of the

following kind:

1. a pair p(ȳ)∧¬p(z̄) s.t. ȳ|x̄ j←x̄ j+n = z̄|x̄ j←x̄ j+n; or

2. an atom y 6= z s.t. y|x̄ j←x̄ j+n = z|x̄ j←x̄ j+n .

Since, by definition, [η]|
j+n
j (〈ψi〉i≤ j+n) is in CQ¬ form, it does not contain any

equality atoms, and we assumed we have no constants, the only possible derivation of a

contradiction have the form described in Definition 4.1.2. It follows easily that,

Lemma 4.1.3. [η]|
j+n
j (〈ψi〉i≤ j+n)∧ x̄ j = x̄ j+n is satisfiable iff no subset of its atoms is

a contradiction proof.

This means that the only information we need of the inherited constraints of a

symbolic run is the existence of contradiction proofs. In order to define reduced form of

inherited constraints we will make use of the concept of renamed formula.

75

Definition 4.1.4. Let ∃z̄(f (x̄, z̄)) be a conjunction of atoms of [η] in prenex form, we

call the renamed formula ren[η](∃z̄ f (x̄, z̄)) = ∃z̄′ f (x̄, z̄′) a formula that substitutes each

existential variable in z̄ in f (x̄, z̄), with a new existential variable in z̄′ that does not

appear in [η].

We can now define the reduced form:

Definition 4.1.5. Let 〈ρi〉i≤ j+n be a symbolic run prefix, we define the no-dep-

proof-reduced inherited constraints redn([η]|
j+n
j (〈ψi〉i≤ j+n)) in the following way.

redn([η]|
j+n
j (〈ψi〉i≤ j+n)) contains:

1. all terms t(ȳ) s.t. ȳ⊆ (¯[x] j∪
¯[x]i); and,

2. for each proof f of [η]|
j+n
j (〈ψi〉i≤ j+n), renredn([η])(f) if there is no variable bijec-

tion µ s.t. µ(x) = x for all x ∈ ¯[x j]∪ ¯[x j+n] and redn([η]|
j+n
j (〈ψi〉i≤ j+n)) contains

µ(renredn([η])(f)).

The intuition of the above definition is that we want to keep a single copy for

each proof (up to renaming of existential variables) while at the same time discarding

the information about the joins between the proofs. The terms in 1) are kept in order to

easily compute redm without fully materializing the inherited constraints (see Lemma

4.1.8).

Now we outline the technique to perform verification. The idea is to create

a finite state automaton that recognizes the language of all the symbolic prefixes s.t.

[η]|
j+n
j (〈ψi〉i≤ j+n)∧ x̄ j = x̄ j+n is satisfiable and they satisfy ¬ϕ . We will then use

redn([η]) instead of [η]. For this idea to work we need first to prove that redn carries

enough information to check satisfiability of the whole [η].

Lemma 4.1.6. [η]|
j+n
j (〈ψi〉i≤ j+n) ∧ x̄ j = x̄ j+n is satisfiable iff

redn([η]|
j+n
j (〈ψi〉i≤ j+n))∧ x̄ j = x̄ j+n is satisfiable.

Sketch: The only possible form of a contradiction proof is p(ȳ) ∧ ¬p(z̄) with

ȳ|x̄ j←x̄ j+n = z̄|x̄ j←x̄ j+n or y 6= z with y|x̄ j←x̄ j+n = z|x̄ j←x̄ j+n . It follows by construction that

if it appears in [η] there is a proof in red f containing it, and vice versa. �

Note that redn is polynomially bounded w.r.t. the number of attributes in the

artifact system, considering the maximum arity of the database schema fixed.

76

4.1.2 PSPACE verification

In order to design an efficient procedure for verification, we need a way to com-

pute redn without computing the whole inherited constraints first. We describe now a

way to compute redn([η]|
j+n
j (〈ψi〉i≤ j+n)) through a scan of a symbolic prefix 〈ψi〉i≤ j+n,

without materializing the full inherited constraints. While scanning the symbolic prefix,

we keep only the following formula:

Definition 4.1.7. We call activen([η]), the formula computed while scannning 〈ψi〉i≤ j+n

in the following way:

• activen([η](〈ψ0〉)) = [η](〈ψ0〉);

• we keep track of the equivalence classes using the equality atoms in the symbolic

transitions;

• for all i<= j, we build activen([η]|i) from activen([η]|i−1)∧ψi and we keep only:

1. the terms t(ȳ) s.t. ȳ⊆ ¯[x]i; and

2. all distinct proofs w.r.t. i, i up to renaming of existential variables (i.e. vari-

ables not in ¯[xi]).

• for all j < i <= j+ n, we build activen([η]|ij) from activen([η]|i−1
j)∧ψi and we

keep only:

1. all terms t(ȳ) s.t. ȳ⊆ (¯[x] j∪
¯[x]i); and,

2. all distinct proofs w.r.t. j, i up to one-to-one renaming of existential variables

(i.e. variables not in ¯[x j]∪ ¯[xi]).

First, we prove that computing this formula is indeed redn

Lemma 4.1.8. If activen([η]|i−1(〈ψk〉k≤i−1)) (resp. activen([η]|i−1
j)) is

redn([η]|i−1(〈ψk〉k≤i−1)) (resp. redn([η]|i−1
j)), then activen([η]|i(〈ψk〉k≤i)) (resp.

activen([η]|ij)) is redn([η]|i(〈ψk〉k≤i)) (resp. redn([η]|ij)).

Proof: Given the definition of redn, we only need to prove that activen([η]|i contains all

proofs (up to existential variables renaming) that are in redn([η]|i). First, if a proof was

77

in redn([η]|i−1(〈ψk〉k≤i−1)), by hypothesis it is in activen([η]|i−1, so by construction

it is still present (up to renaming) in activen([η]|i. Let us consider now a proof that

did not exists in redn([η]|i−1(〈ψk〉k≤i−1)). This means that it uses a literal l from ψi.

Given the structure of a proof, it must be that all the variables in the proof are in ¯[xi]

(resp. ¯[x j]∪ ¯[xi]), it follows that all terms are in activen([η]|i (resp. activen([η]|ij)), by

construction. �

Also:

Lemma 4.1.9. activen size is polynomial w.r.t. the number of attributes in the system,

considering a fixed database arity.

Proof: activen contains either atoms with only free variables (which are at most 2 · |x̄|),

or proofs. The possible number of proofs that are distinct, up to one-to-one renaming of

existential variables, is polynomial w.r.t. the number of attributes, because in each proof

(including at most 2 atoms) there are at most 2 · arity existential variables, with arity

being the maximum arity in the database schema. It follows that the possible proofs are

bounded by O(p · (arity+ |x|)arity). If arity is 1, then the exponent is 2 to consider the

contradiction proofs of the form x 6= y. �

We now create an automaton that recognizes the set of prefixes s.t.

red f ([η]|
j+n
j (〈ψi〉i≤ j+n))∧ x̄ j = x̄ j+n is satisfiable. First, we augment the symbols to

the cross products of ther symbolic transitions with {−, j, j+n}, this serves to identify

the j and j+ n instants in the string. We build now a non-deterministic automaton A

that performs that accepts only if:

1. there exists a single symbol marked with j, and a single j + n at the end of the

string;

2. keeping activen([η]|i(〈ψk〉k≤i)) in its state up to the symbol {ψ, j}, and

then activen([η]|ij(〈ψk〉k≤i)), it checks that at the end of the string

activen([η]|
j+n
j (〈ψk〉k≤ j+n))∧ ¯[x j] = ¯[x j+n];

3. it runs BA¬ϕ on the symbolic prefix, and makes sure that it is on a final state r

after the symbol {ψ, j} and on the final symbol marked with j+n;

78

The states in A contain the following information:

• activen;

• the current state of BA;

• flags for cheking existence of j and j+n symbol in the right number and places.

The transition relation maintains activen by using the Definition 4.1.7, and the

state of the BA, by running BAϕ on the symbolic prefix. It is immediate to see that A

checks the conditions of Lemma 4.1.1. It follows that checking emptyness of A solves

the verification problem for artifact systems with no data dependencies and a property

ϕ .

Since the size of activen depends polynomially w.r.t. the number of attributes,

considering a fixed arity database, it follows that we have a number of states that is

exponential in the number of attributes. Checking emptyness of a non-deterministic

automaton can be performed in LOGSPACE, it follows that:

Lemma 4.1.10. A solves the verification problem in PSPACE w.r.t. the number of

attributes in the artifact systems, considering a fixed arity database.

4.2 Key dependencies

In this section we consider an artifact system with a db schema that has unary

key dependencies. We assume w.l.o.g. that the schema is normalized, in the sense that

if a relation has a key, it only has a single dependent attribute. Also, we assume that the

key attribute is always the first. As in the previous section we will create an automaton

that checks emptyness of the language of the satisfiable symbolic prefixes s.t. x̄ j = x̄ j+n

and they satisfy BA¬ϕ . Analogously to the previous case we define the notion of proof.

First, however, we have to introduce the following concepts:

Definition 4.2.1. A head is, either:

1. a pair p(ȳ)∧¬p(z̄); or

2. an atom y 6= z.

79

Definition 4.2.2. A matching chain with head {y,z} is a minimal set of atoms s.t.:

1. it contains two atoms p(yk,y) and p(zk,z) with p a predicate with a key constraint;

and

2. either yk|x̄ j←x̄ j+n = zk|x̄ j←x̄ j+n , or it contains a pair of matching chains with head

{yk,zk}.

Definition 4.2.3. Let [η]|
j+n
j (〈ψi〉i≤ j+n)∧ x̄ j = x̄ j+n be in prenex form. We call a unary-

keys contradiction proof (or simply proof) a minimal set of the atoms in [η] s.t.:

1. it contains a head;

2. for every corresponding pair of variables {y,z} in the head (i.e. with y 6= z, or

y ∈ ȳ and z ∈ z̄ in the same key-attribute position), if y|x̄ j←x̄ j+n 6= z|x̄ j←x̄ j+n , then

there is a matching chain with head {y,z}.

We will now use the informal notion of derivation rule in the context of a chase.

Let p(x,y)∧ p(x,z)→ y = z be a key constraint, we say that it can be represented by

a derivation rule p(x,y)∧ p(x,z) ⊢ y = z. In the same way, the event of a failing chase

can be encoded in a series of derivation rules that imply f alse (or ⊥). For instance

x 6= x ⊢ ⊥.

Lemma 4.2.4. [η]|
j+n
j (〈ψi〉i≤ j+n)∧ x̄ j = x̄ j+n is satisfiable iff it does not contain any

contradiction proof.

Proof: First, we prove the following claim:

† a matching chain with head {y,z} implies y = z.

The claim follows from the fact that every link of the chain is the left-side of a key data

dependency that results in the equality of the dependent attributes.

Let us assume that [η] contains a contradiction proof p. It follows that for every

corresponding pair of attributes in the head {y,z} is, either equal (y = z), or there exists

a matching chain, which, by †, implies y = z. It follows that the head is a contradiction,

hence [η] is unsatisfiable.

80

Now we assume [η] is unsatisfiable. It follows that there has to be a way to

derive a negation from the terms in [η] plus the key dependencies. Remember that [η]

is in CQ¬ form and we are assuming no constants are present. It follows that the only

derivation rules that results in ⊥ are the following:

1. p(x̄)∧¬p(x̄) ⊢ ⊥;

2. x 6= x ⊢ ⊥.

It follows that any derivation resulting in a contradiction has to end with one of those

rules. The only other derivation rules are the key dependencies. It follows that we

can build a proof p (as in Definition 4.2.3) by including the terms that are used in the

derivation. Since the application of the key derivation rules matches the structure of the

matching chains, and the final derivation matches the structure of the head, it is easy to

see that there exists a proof p in [η]. �

In the case with no dependencies, we could simply extract all proofs from [η]

in order to build redn. In this case, however, proofs are not bounded in general, and,

for feedback-free artifact systems, they are bounded only by the size of [η] which

is hyperexponential. To overcome this issue, the main idea is to take advantage of

the structure of the contradiction proof, by decomposing it in polynomially bounded

fragments while still maitaining all the infromation necessary to check satisfiability of

[η]|
j+n
j (〈ψi〉i≤ j+n)∧ x̄ j = x̄ j+n.

Definition 4.2.5. We call a proof fragment (or fragment) f a maximal subset of the

terms in a contradiction proof s.t.:

1. either f contains a single term t(ȳ) with ȳ ∈ x̄i∪ x̄k; or

2. for every pair of terms s(ȳ), t(z̄), there exists a sequence of terms s(ȳ) =

u0(w̄0) . . .un(w̄n) = t(z̄) s.t. for every 0 ≤ i < n, w̄i ∩ w̄i+1 ∩ (x̄ j ∪ x̄k) 6= /0 (i.e.

they are joined on an existentially quantified variable).

Note that the above definition guarantees that all joins that are made to create the

chaining happen with existentially quantified variables. Also,

81

Lemma 4.2.6. In feedback-free systems, the maximum size of a fragment is polynomial

w.r.t. the number of attributes in the system, considering a fixed arity database.

Proof: First, in feedback-free system [η] can be rewritten with quantifier depth bounded

by |x̄|2 (with x̄ being the attributes of the system). Since fragments are ultimately sub-

sets of [η], the same property holds. Given the join structure of a chain, it is easy to

see that, with a quantifier depth of qd, it is possible to use at most 2 · qd existentially

quantified variables. Any fragment can at most include a number of matching chains

that is bounded by the maximum arity of the database, It follows that any fragments can

at most use O(arity · qd) existentially quantified variables. The number of total vari-

ables are then O(arity ·qd + |x̄|). The number of possible literals in a fragment (i.e. the

fragment size) is then bounded by O(p · (arity ·qd + |x|)arity), with p being the number

of predicates in the database. It follows that, if the arity is fixed, the size is polynomial

w.r.t. the number of attributes. �

Now, we define the reduced form red f in a way similar to redn.

Definition 4.2.7. Let 〈ρi〉i≤ j+n be a symbolic run prefix, we define the key-

proof-reduced inherited constraints red f ([η]|
j+n
j (〈ψi〉i≤ j+n)) in the following way.

redn([η]|
j+n
j (〈ψi〉i≤ j+n)) contains:

1. all terms t(ȳ) s.t. ȳ⊆ (¯[x] j∪
¯[x]i); and,

2. for each proof fragment f of [η]|
j+n
j (〈ψi〉i≤ j+n), ren

redn([η]|
j+n
j)

(f) if

there is no one-to-one variable substitution µ of existential veriables s.t.

µ(ren
redn([η]|

j+n
j)

(f))⊆ redn([η]|
j+n
j (〈ψi〉i≤ j+n)).

We can now derive the following result.

Lemma 4.2.8. [η]|
j+n
j (〈ψi〉i≤ j+n) ∧ x̄ j = x̄ j+n is satisfiable iff

red f ([η]|
j+n
j (〈ψi〉i≤ j+n))∧ x̄ j = x̄ j+n is satisfiable.

Proof: We prove the contrapositive: [η]|
j+n
j (〈ψi〉i≤ j+n)∧ x̄ j = x̄ j+n is unsatisfiable iff

red f ([η]|
j+n
j (〈ψi〉i≤ j+n))∧ x̄ j = x̄ j+n is unsatisfiable.

Let us assume that [η]|
j+n
j (〈ψi〉i≤ j+n)∧ x̄ j = x̄ j+n is unsatisfiable. It follows that

it contains contradiction proof p. Also, p can be partitioned in a set of fragments F . Let

82

us call Fr the renamed versions of the fragment in F (i.e. Fr = {ren
redn([η]|

j+n
j)

(f)| f ∈

F}). Fragments in Fr appear, up to a rnaming of existentially quantified variables, in

red f ([η]|
j+n
j (〈ψi〉i≤ j+n))∧ x̄ j = x̄ j+n. Let us call pr the conjunction of the fragments

in Fr. We prove now that pr is syntactically equal to p up to a renaming of existen-

tially quantified variables. Let µ be the composition of the renamings used for the

fragments of p to generate the fragments in Fr. The renaming µ is well-formed be-

cause, by definition of fragment, no existentially quantified variable appears in more

than one fragment of F . It follows that applying µ to p gives exactly pr. This means

that red f ([η]|
j+n
j (〈ψi〉i≤ j+n))∧ x̄ j = x̄ j+n is unsatisfiable.

Let us now assume that red f ([η]|
j+n
j (〈ψi〉i≤ j+n))∧ x̄ j = x̄ j+n is unsatisfiable.

Again, it must contain a proof pr that can be partitioned in a set of fragments Fr.

By construction, these fragments are the renamed versions of a set of fragments F in

[η]|
j+n
j (〈ψi〉i≤ j+n)∧ x̄ j = x̄ j+n. The terms in the fragments in F form a contradiction

proof in [η]|
j+n
j (〈ψi〉i≤ j+n)∧ x̄ j = x̄ j+n, which is unsatisfiable. �

Given the bound on the size of the fragments it is easy to see that the size of this

reduced form is exponential in the number of attributes, given a fixed arity database.

Analogously to the case described in the previous subsection, we can design a

precedure that computed red f while scanning a symbolic prefix. In order to do it we

maintain the following formula.

Definition 4.2.9. We call active f ([η]), the formula computed while scannning 〈ψi〉i≤ j+n

in the following way:

• active f ([η](〈ψ0〉)) = [η](〈ψ0〉);

• we keep track of the equivalence classes using the equality atoms in the symbolic

transitions;

• for all i <= j, we build active f ([η]|i) from active f ([η]|i−1,i(〈ψk〉k≤i)) (i.e.

[η](〈ψk〉k≤i) with existential quantifiers for ¯[x]k, k <= i−2) keeping only:

1. the terms t(ȳ) s.t. ȳ⊆ ¯[x]i; and

2. for every fragment f in active f ([η]|i−1)∧ψi w.r.t. free variables ¯[x]i, we

keep a renamed fragment renactive f ([η]|i−1)∧ψi
(f);

83

• for all j < i <= j + n, we build active f ([η]|ij) from active f ([η]|i−1,i
j (〈ψk〉k≤i))

keeping only:

1. all terms t(ȳ) s.t. ȳ⊆ (¯[x] j∪
¯[x]i); and,

2. for every fragment f in active f ([η]|i−1
j)∧ψi w.r.t. free variables ¯[x] j ∪

¯[x]i

we keep a renamed fragment renactive f ([η]|i−1
j)∧ψi

(f);

The soundness of the above procedure is proved by the following lemma.

Lemma 4.2.10. If active f ([η]|i−1(〈ψk〉k≤i−1)) (resp. active f ([η]|i−1
j)) is

red f ([η]|i−1(〈ψk〉k≤i−1)) (resp. red f ([η]|i−1
j)) (up to one-to-one existential variables

renaming), then active f ([η]|i(〈ψk〉k≤i)) (resp. active f ([η]|ij)) is red f ([η]|i(〈ψk〉k≤i))

(resp. red f ([η]|ij))

Proof: Let f be a fragment in red f ([η]|i(〈ψk〉k≤i)). It follows that, if it contains only

terms with variables in ¯[x]i−1 ∪
¯[x]i, then f is in active f ([η]|i(〈ψk〉k≤i)) because those

terms appear in active f ([η]|i−1,i(〈ψk〉k≤i)). Let us analyze the case when f contains

some terms with variables not in ¯[x]i−1∪
¯[x]i, let us call the set of those term T . Since

all the terms in T are part of a fragment f , they are part of a contradiction proof. It

follows that every term in T was part of a proof in red f ([η]|i−1(〈ψk〉k≤i−1)) and so

appeared in active f ([η]|i−1(〈ψk〉k≤i−1)) in some fragment. Note that different terms in

T might have appeared in different fragments of active f ([η]|i−1(〈ψk〉k≤i−1)), we call F

the set of these fragments. Also, by construction, terms in T that come from different

fragments of active f ([η]|i−1(〈ψk〉k≤i−1)) can only be joined in f through terms in ψi.

Since active f ([η]|i−1,i(〈ψk〉k≤i)) contains those terms, along with all the fragments F ,

it must contain f , which then appears in active f ([η]|i).

The case for the respective formulas is analogous. �

Note that, since the size of the fragments is polynomial w.r.t. the number of

attributes, it follows that, since active f can at most include all possible fragments, its

size is bounded by an exponential function w.r.t. the number of attributes, considering a

fixed arity database.

Analogously to the previous section, it is easy to see that we can build an automa-

ton that recognizes the language of symbolic prefixes s.t. red f ([η]|
j+n
j (〈ψi〉i≤ j+n))∧

84

x̄ j = x̄ j+n. Again, we augment the symbols to the cross products of ther symbolic tran-

sitions with {−, j, j+n}, this serves to identify the j and j+n instants in the string. We

build now a non-deterministic automaton A that performs that accepts only if:

1. there exists a single symbol marked with j, and a single j + n at the end of the

string;

2. keeping active f ([η]|i(〈ψk〉k≤i)) in its state up to the symbol {ψ, j}, and

then active f ([η]|ij(〈ψk〉k≤i)), it checks that at the end of the string

active f ([η]|
j+n
j (〈ψk〉k≤ j+n))∧ ¯[x j] = ¯[x j+n];

3. it runs BA¬ϕ on the symbolic prefix, and makes sure that it is on a final state r

after the symbol {ψ, j} and on the final symbol marked with j+n;

The states in A contain the following information:

• active f ;

• the current state of BA;

• flags for cheking existence of j and j+n symbol in the right number and places.

The transition relation maintains active f by using the Definition 4.2.9, and the

state of the BA, by running BAϕ on the symbolic prefix. It is immediate to see that A

checks the conditions of Lemma 4.1.1. It follows that checking emptyness of A solves

the verification problem an artifact system with unary keys and property ϕ .

Since the size of active f depends exponentially w.r.t. the number of attributes,

considering a fixed arity database, it follows that we have a number of states that is dou-

bly exponential in the number of attributes. Checking emptyness of a non-deterministic

automaton can be performed in LOGSPACE, it follows that:

Proposition 4.2.11. A solves the verification problem in EXPSPACE w.r.t. the number

of attributes in the artifact systems, considering a fixed arity database.

85

4.2.1 Navigational complexity

In this subsection we introduce the notion of navigational complexity, which

helps to better understand the complexity of the technique described above. First, we

call chain a conjunction of positive literals s.t. p(x,y) is a chain rooted in x if p is a

predicate with a key constraint; and p(w,z)∧ c(z) if p is a predicate with a key and c(z)

is a chain rooted in z.

Definition 4.2.12. The navigational complexity of an artifact system-property pair

(Γ,ϕ f) is the maximum length of a chain that appears in any rewritten inherited con-

straint [η∗] of (Γ,ϕ f).

Intuitively, the length of the chains represent to what extent the business process

navigates the key dependencies in the database. Clearly, by Lemma 4.2.6, in feedback-

free systems the maximum navigational complexity is polynomially bounded by the

number of attributes in the system. However, we argue that navigational complexity

usually depends on the structure of the database schema and business processes are not

used to perform extensive navigation. It is then interesting to explore the complexity in

the case of constant navigational complexity.

Proposition 4.2.13. Considering constant navigational complexity, verifying a property

ϕ on a feedback-free artifact system using unary key dependencies and no arithmetic is

in PSPACE.

Proof: In the case of constant navigational complexity the number of possible frag-

ments is polynomially bounded. This follows from the fact that the maximum number

of terms s in a contradiction proof is bounded by 2 · arity · (nav + 1), where nav is

the navigational complexity. It follows that the maximum number of existential vari-

ables |V | is bounded by the above size times the arity. The total number of variables

is then |V |+ |x̄|, where x̄ are the attributes of the system. The possible terms are then

2 · p · (|X |+ |x̄|)arity. Since fragments are subsets of proofs, the number of possible frag-

ments is O((2 · p · (|X |+ |x̄|)arity)s), which is polynomial in the number of variables in

the system |x̄|.

The verification complexity upper bound comes from the above and Proposition

4.2.11. �

86

A sufficient condition can be derived from the database schema by imposing a

specific form on the pre and post-conditions of services. Intuitively, we want to char-

acterize the common class of business processes that use joins just to navigate foreign

keys. If this is the case, when the foreign key schema is acyclic, we have a navigational

complexity that depends on the database schema.

Formally, we define a graph E(Γ,ϕ) from the services of Γ and a property ϕ , that

has one node for each attribute and an edge (a,b) if there exists an equality a = b (or

a′ = b′, a = b′,a′ = b) in any pre or post condition in the services of Γ or in ϕ .

Definition 4.2.14. Assuming a schema with foreign key dependencies, we call foreign-

key-navigation system an artifact system where in any pre or post-condition of any

service, for every attribute variable a that appears in a term t(a,b) as a key attribute,

all the variables r reachable from a in EΓ (including a), when they appear in a database

term s(c,a), there is a foreign key constraint s2 ⊆ t1 in the schema.

It is immediate that the above definition guarantees, that in any computational

graph of (Γ,ϕ) there is no join on a key attribute that is not encoded in the foreign key

constraints. It follows:

Lemma 4.2.15. With a database schema DB with acyclic foreign-keys, a foreign-key-

navigation system has constant navigational complexity w.r.t. the number of attributes,

given a fixed database schema.

Proof: Since all the joins in the inherited constraints that involve key attributes follow

the foreign keys dependencies, it follows that the maximum length of a chain is bounded

(as the foreign keys are acyclic) and it depends only on the size of the database schema.

It follows that with a fixed database schema, we have a navigational complexity that is

constant. �

From Proposition 4.2.13.

Corollary 4.2.16. The verification problem for a foreign-key-navigation system (Γ,ϕ)

is PSPACE in the size of the system, given a fixed database schema.

87

4.2.2 Relaxing feedback-freedom

In the technique we just presented we use the feedback free defintion only to

bound the size of the fragments. Note, however, that the feedback-freedom as it is

presented in Definition 2.3.2, is more restrictive than what we require. We now present

a modified version that is more lenient.

In order to state our definition we change the defintion of computational graph

by modifying the Gψ graph associated to the symbolic transitions. In Section 2.3, Gψ

was defined as the restriction to x̄, x̄′ of the transitive closure of the graph containing an

edge among every two variables occurring together in an atom of ψ . We define, now

Gk
ψ as the restriction to x̄, x̄′ of the transitive closure of the graph containing an edge

for every two variables xi and x j occurring in an atom p(xi,x j) of ψ , s.t. p has a key

constraint. Let ρ be a symbolic run, Gk
ρ is defined from Gk

ψ as in Section 2.3.

Definition 4.2.17. (Γ,ϕ f) is key-feedback-free iff for every symbolic run prefix ρ =

{ψi}i≤n, each path from xi to x j in Gk
ρ contains a node y such that span([xi]) ∪

span([x j])⊆ span([y]).

Note that this definition does not imply anymore that the inherited constraints

can be rewritten with bounded quantifier depth. However, since, matching chains are

connected components that contain only predicates with keys, they can be rewritten

with bounded quantifier depth. It follows from Lemma 4.2.6:

Corollary 4.2.18. In key-feedback-free systems, the maximum size of a fragment is poly-

nomial w.r.t. size of system.

So we have:

Corollary 4.2.19. Verifying a property ϕ on a key-feedback-free artifact system using

unary key dependencies is in EXPSPACE (PSPACE with constant navigational complex-

ity)

4.3 (Re-)Introducing arithmetic

The reduced form of inherited constraints introduced in Section 3.1.1 has a size

that is hyperexponential in the number of attributes, even when no dependencies or

88

arithmetic is present. In the rest of this chapter we proved how, in the absence of arith-

metic, we are able to discard information from the inherited constraints to a much more

manageable level. Also, in Lemma 3.2.3 we proved that we can effectively separating

the satisfiability of the database portion of the inherited constraints from the arithmetic

portion by guessing equality types of common variables. The main idea of this section

is then to define a reduced form that does not incur in the hyperexponential size unless

arithmetic is present.

First, we denote with [ηdb] the subset of terms of [η] that either refer to database

predicates or to equalities and inequalities. Analogously, we denote with [ηa] the subset

with only equalities, inequalities and arithmetic terms.

As clear from Lemma 3.2.3, the satisfiability of [η] depends on the equality

type of the common variables. In order to define a reduced form that takes this into

account, we call A[ηa] the set of variables appearing in [ηa]. Since we want to maitain

all information regarding the equality types of this variables, we define the following

reduced form.

We denote with [η]|V (〈ψi〉i<k) the formula ∃z̄([η](〈ψi〉i<k)), where z̄ = {[x̄]i|i <

k}\V .

Definition 4.3.1. Let 〈ρi〉i≤ j+n be a symbolic run prefix, we define the

mixed-reduced inherited constraints redm([η]|
j+n
j (〈ψi〉i≤ j+n)) the formula

∃z̄(red f ([ηdb]|V (〈ψi〉i≤ j+n))) ∧ [ηa]|
j+n
j (〈ψi〉i≤ j+n), where V = x̄ j ∪ x̄ j+n ∪ A[ηa]

and z̄ =V \ (x̄ j∪ x̄ j+n).

Note how the construction of the fragments in red f ([ηdb]|V (〈ψi〉i≤ j+n)) changes

as a result of the different quantification. We have then:

Lemma 4.3.2. Let eq(V) be an equality type of the variables in V .

redm([ηdb]|V (〈ψi〉i≤ j+n)) ∧ eq(V) is satisfiable iff [ηdb]|V (〈ψi〉i≤ j+n) ∧ eq(V) is

satisfiable.

Proof: We prove the contrapositive: redm([ηdb]|V (〈ψi〉i≤ j+n))∧ eq(V) is unsatisfiable

iff [ηdb]|V (〈ψi〉i≤ j+n)∧ eq(V) is unsatisfiable.

Let us assume that [ηdb]|V (〈ψi〉i≤ j+n)∧ eq(V) is unsatisfiable. It follows that it

contains contradiction proof p. Also, p can be partitioned in a set of fragments F and

89

of atoms in eq(V). Let us call Fr the renamed versions of the fragment in F . Fragments

in Fr appear, by construction, in red f ([ηdb]|V (〈ψi〉i≤ j+n))∧ eq(V). Let us call pr the

conjunction of all the fragments in Fr and of eq(V). We prove now that pr is syntac-

tically equal to p up to a renaming of existentially quantified variables. Let µ be the

composition of the renamings used for the fragments of p to generate the fragments in

Fr. The renaming µ is well-formed because, by definition of fragment, no existentially

quantified variable appears in more than one fragment of F . It follows that applying µ to

p gives exactly pr, because p is formed only by fragments and eq(V) and eq(V) contains

no existential quantified variable. This means that red f ([η]|
j+n
j (〈ψi〉i≤ j+n))∧ x̄ j = x̄ j+n

is unsatisfiable.

Let us now assume that red f ([η]|
j+n
j (〈ψi〉i≤ j+n))∧ x̄ j = x̄ j+n is unsatisfiable.

Again, it must contain a proof pr that can be partitioned in a set of fragments Fr plus

eq(V). By construction, the fragments in Fr are the renamed versions of a set of frag-

ments F in [η]|
j+n
j (〈ψi〉i≤ j+n)∧ x̄ j = x̄ j+n. The terms in the fragments in F plus eq(V)

form then a contradiction proof in [η]|
j+n
j (〈ψi〉i≤ j+n)∧ x̄ j = x̄ j+n, which is unsatisfi-

able. �

From Lemma 3.2.3 and Lemma 4.3.2, it follows:

Corollary 4.3.3. [η]|
j+n
j (〈ψi〉i≤ j+n) ∧ x̄ j = x̄ j+n is satisfiable iff

redm([η]|
j+n
j (〈ψi〉i≤ j+n))∧ x̄ j = x̄ j+n is satisfiable.

4.3.1 Incrementally maintaining redm([η])

We now present the incremental procedure to maitain redm. The main idea is

maintain separately the database and the arithmetic portions. The maintenance of the

database portion depends on the arithmetic part, so we start by describing that one.

First, we define the following concept:

Definition 4.3.4. We call a general fragment f a subset of the terms of [η]|kj s.t.:

1. either f contains a single term t(ȳ) with ȳ ∈ x̄i∪ x̄k; or

2. for every pair of terms s(ȳ), t(z̄), there exists a sequence of terms s(ȳ) =

u0(w̄0) . . .un(w̄n) = t(z̄) s.t. for every 0 ≤ i < n, w̄i ∩ w̄i+1 ∩ (x̄ j ∪ x̄k) 6= /0 (i.e.

they are joined on an existentially quantified variable).

90

Now we outline the incremental maintenance procedure:

• red([ηa](ψ0)) = [ηa](ψ0);

• we keep track of the equivalence classes using the equivalence atoms in the sym-

bolic transitions ψi;

• for all i<= j, we build red([ηa]|i) from red([ηa]|i−1,i(〈ψk〉k≤i)) (i.e. [η](〈ψk〉k≤i)

with existential quantifiers for ¯[x]k, k <= i−2) keeping only:

1. the terms t(ȳ) s.t. ȳ⊆ ¯[x]i; and

2. for every general fragment f in red([ηa]|i−1)∧ψi w.r.t. free variables ¯[x]i,

we keep a renamed fragment f r;

• for all j < i <= j+n, we build red([ηa]|
i
j) from red([ηa]|

i−1,i
j (〈ψk〉k≤i)) keeping

only:

1. all terms t(ȳ) s.t. ȳ⊆ (¯[x] j∪
¯[x]i); and,

2. for every fragment f in red([ηa]|
i−1
j)∧ψi w.r.t. free variables ¯[x] j ∪

¯[x]i we

keep a renamed fragment f r;

Note the difference between this procedure and the one presented in Section 4.2:

the above one uses general fragments, which are not subsets of a contradiction proof.

We have, then:

Lemma 4.3.5. Let us denote by P(red([ηa](〈ψi〉i≤k)),ψk+1) the application

of the above procedure to the reduced form in instant k and the sym-

bolic transition ψk+1, then P(red([ηa](〈ψi〉i≤k)),ψk+1) = red([ηa](〈ψi〉i≤k+1) (resp.

P(red([ηa]
k
j(〈ψi〉i≤k)),ψk+1) = red([ηa]|

k+1
j (〈ψi〉i≤k+1)).

Proof: First, we elaborate on how we keep track of the equivalence classes while

extending the inherited constraints with ψk+1. We create a new existential quanti-

fier for all new equivalence class variables, and we close the scope of all equiva-

lence classes [e] s.t. no x ∈ x̄k+1 is in [e]. We also note that, by definition of in-

herited constraints, [ηa](〈ψi〉i≤k+1) is the same as ∃z̄([ηa](〈ψi〉i≤k) ∧ [ψk+1]), with

91

z̄ the set of equivalence class variables s.t. no x ∈ x̄k+1 appears in [z] ∈ z̄. We

prove now that ∃z̄(red([ηa](〈ψi〉i≤k)) ∧ [ψk+1]) ∼ [ηa](〈ψi〉i≤k+1). First, we know,

by definition of red that red([ηa](〈ψi〉i≤k)) ∼ [ηa](〈ψi〉i≤k). This means that all sub-

trees in T (red([ηa](〈ψi〉i≤k))) appear in T ([ηa](〈ψi〉i≤k)) and vice versa. It fol-

lows, by construction, that all subtrees in T (∃z̄(red([ηa](〈ψi〉i≤k)) ∧ [ψk+1])) ei-

ther come from T ([ηa](〈ψi〉i≤k)) or are trees from T (∃z̄([ψk+1])) with trees from

T ([ηa](〈ψi〉i≤k)) added as leaves. Remember that, by definition of inherited con-

straints, [ηa](〈ψi〉i≤k+1) = ∃z̄([ηa](〈ψi〉i≤k) ∧ [ψk+1]). It follows that we can ap-

ply the same reasoning as above in the opposite direction. This means that all

trees in [ηa](〈ψi〉i≤k+1) come either from [ηa](〈ψi〉i≤k) (which menas also from

red([ηa](〈ψi〉i≤k))) or from combining trees from [ηa](〈ψi〉i≤k) as leaves of trees

from T (∃z̄([ψk+1])). Let us call Pp a modified version of the incremental proce-

dure above that does not remove duplicate fragments w.r.t. renaming. It follows that

Pp(red([ηa](〈ψi〉i≤k)),ψk+1) = ∃z̄(red([ηa](〈ψi〉i≤k))∧ [ψk+1])∼ [ηa](〈ψi〉i≤k+1).

We now have to prove that P(red([ηa](〈ψi〉i≤k)),ψk+1) is the reduced version

of Pp(red([ηa](〈ψi〉i≤k)),ψk+1) First, we note that the definition of general fragment

corresponds to the one of top-level subtrees in T ([ηa](〈ψi〉i≤k+1)). It follows that we

can easily prove the following invariant:

‡ the procedure P output never contains a duplicated top-level tree.

This follows immediately from the fact that the output contains only general frag-

ments that are distinct w.r.t. existental variable renamings. Let us consider now

the top-level trees T of T (P(red([ηa](〈ψi〉i≤k),ψk+1) that were not top-level trees in

T (red([ηa](〈ψi〉i≤k))). By construnction, the children of trees in T were top-level

trees in T (red([ηa](〈ψi〉i≤k))) or come from T (∃z̄[ψk+1]). It follows that there are

no duplicates in the children of the top-level trees in T (P(red([ηa](〈ψi〉i≤k),ψk+1).

Moreover, by ‡ we know that there are no duplicates in top-level trees. It follows that

P(red([ηa](〈ψi〉i≤k)),ψk+1) is a well-formed reduced form.

The respective case is analogous. �

Since we can incrementally maintain the arithmetic portion of redm, it follows

that we can easily modify the procedure in Section 4.2 to incrementally maintain the

92

database portion (since the free variables contain the current variables x̄i the proof is

substantially unaltered).

4.3.2 Complexity

In the mixed reduced form, the number of possible fragments depend on the

number of variables in the arithmetic part.

Lemma 4.3.6. For feedback-free systems, the size of redm([η]|
j+n
j (〈ψi〉i≤ j+n)) is

O(h(w2
a)), for some h ∈ Hyp, with wa the width of the maximum connected component

with only arithmetic terms.

Proof: The size of the arithmetic portion is O(h(w2
a)) (Lemma 3.1.8). From the same

counting reasoning in Lemma 4.2.6 we derive the size of the database portion to be in

O(h(w2
a)). �

With this result we have a verification procedure whose complexity is in EX-

PSPACE (PSPACE with constant navigational complexity) when no arithmetic is used

and hyperexponential in the width of the largest connected component in [ηa] (from

Lemma 4.3.6 when arithmetic is used.

4.3.3 Relaxing feedback freedom

As in the previous section, we are able to relax the feedback freedom definition.

In order to state our definition we change the defintion of computational graph

by modifying the Gψ graph associated to the symbolic transitions. Let ψdb be the subset

of ψ whose term refer only to database predicates, equalities or inequalities. Let ψa be

the subset of ψ whose term refer only to arithmetic predicates, equalities or inequalities.

Let us define Gk
ψdb

as is Section 4.2. Let ρ be a symbolic run, Gk
ρ is defined from Gk

ψdb

as in Section 2.3. Analogously, we define Ga
ρ from Gψa . The intuition of this definition

is that we account for database predicates and arithmetic predicates separately.

Definition 4.3.7. (Γ,ϕ f) is arithmetic-key-feedback-free iff for every symbolic run pre-

fix ρ = {ψi}i≤n, each path from xi to x j in both Gk
ρ and Ga

ρ contains a node y such that

span([xi])∪ span([x j])⊆ span([y]).

93

In order to use the above definition in verification we have to prove two results.

The first is:

Lemma 4.3.8. In an artihmetic-key-feedback-free artifact system and property with key

constraints and arithmetic, there exists a run ρ satisfying ¬ϕ iff

1. there exists a symbolic run prefix 〈ψi〉i< j+n s.t. [η]|
j+n
j (〈ψi〉i≤ j+n)∧ x̄ j = x̄ j+n is

satisfiable, and

2. for such 〈ψi〉i< j+n, there exists a run {qi}i≤ j+n of B¬ϕ on {σi}i≤ j+n (i.e. the run

of truth assignments for FO components in ¬ϕ given the run {ψi}i< j+n) such that

for some accepting state r. q j = q j+n = r.

Proof: The if portion is immediate. Let us consider the only if. Let 〈ψi〉i≤ j+n be

a symbolic run that satisfies ρ . The idea is to consider separately the values in ρ

that in 〈ψi〉i≤ j+n appear only in database predicates and those that appear in at least

an arithmetic one. By Lemma 4.1.1 we can identify two instants j and ie such that

[ηdb]|
ie
j (〈ψi〉i≤ie)∧ x̄ j = x̄ie is satisfiable, where [ηdb] is the subset of [η] that excludes

all arithmetic terms. By modifying the technique in Lemma 4.1.1, and knowing that

the number of possible red([ηa]) is finite, we can identify two instants j′ and i′e s.t.

[ηdb]|
i′e
j′(〈ψi〉i≤ie)∧ x̄ j = x̄ie is satisfiable. Also, we know that [ηa] is associated to a

feedback-free computation graph Ga
ρ . It follows that we can apply the same technique

in Lemma 3.1.10 to prove that there is a way to modify the assignments of the values in

the connected components intersecting instant i′e s.t. x̄ j′ = x̄i′e . The thesis follows. �

The second result we need is the boundedness of the reduced form that we use.

Lemma 4.3.9. In artihmetic-key-feedback-free artifact systems the size of

redm([η]|
j+n
j (〈ψi〉i≤ j+n)) is O(h(w2

a)), for some h ∈ Hyp, with wa the width of

the maximum connected component in Ga
ρ .

Proof: Note that the size of the arithmetic portion depends only on the connected com-

ponents in Ga
ρ , it follows that since it is feedback-free the same bound as in feedback-free

systems applies (O(h(w2
a))). Also, the size of the database portion depends on the num-

ber of variables in the arithmetic portion (which is unchanged compared to feedback free

94

systems) and on the lenght of the chains in the fragments. Since chains are connected

components in Gk
ρ , which is feedback-free, we have the same polynomial bound w.r.t.

the number of variables (which is bounded by O(h(w2
a))). It follows that the we have an

O(h(w2
a)) for the database portion too. �

We have then:

Corollary 4.3.10. Verifying a property ϕ on a arithmetic-key-feedback-free artifact sys-

tem using unary key dependencies is in O(h(w2
a)), for some h ∈ Hyp, with wa the width

of the maximum connected component in Ga
ρ .

4.4 Constants

The introduction of constants does not change the above results and complexity

bounds for the following reason. The only difference that constants introduce is that ad-

ditional forms of contradictions are possible. It follows that, in the above development,

we have to modify the definitions of contradiction proofs (Definition 4.1.2 and 4.2.3) in

order to consider constants. The rest of the theory remains the same, and it is easy to see

that the inclusion of constants does not change the size of fragments, and consequently

the worst-case complexity of the algorithms. The additional contradictions arising from

constants are simply:

1. c1 = c2, with c1 and c2 constants;

2. c 6= c, with c a constant.

5 Acyclic Workflows with Exceptions

To analyze the feasibility of the approach described so far, we had to create a

model at a much higher level than the one based on services provided in Chapter 2. The

main requirements of the model are:

• it has to be based on common usage patterns in business process specification;

• it has to be amenable to randomized generation;

• it has to naturally provide a restriction guaranteeing feedback freedom.

In order to describe this high-level model, called Acyclic Workflows with Excep-

tions (AWE), we will divide its description in a part related to the workflow and in one

related to the data conditions. We made this decision to better anchor our decisions to

the research literature of the field. We will then define the formal semantics of our model

by providing a translation procedure to the model presented in Chapter 2. We will also

describe how this high-level model naturally relates to the feedback freedom restriction.

5.1 AWE syntactic model

As it is customary [VDATHKB03], we model a workflow as a way to control the

execution of a series of work items. We derive our model from a series of studies aimed

at identifying the most common patterns in workflow specifications and in commercial

workflow execution engines [VDATHKB03, RtHEvdA05, RHE05, RvdAtH, TLR07].

In order to fully evaluate the power of the verification techinque that we present in this

work, we introduce two extra elements compared to the cited works: artifact attributes

and an external read-only database. In this section we describe our workflow model

95

96

starting from the basic building block (the work item, or basic activity) and then in-

troducing the various construct used to control their execution. The formal syntax is

described in Section 5.2 after all the elements of the models have been informally intro-

duced.

5.1.1 Basic activities

Following the models for work items in [RHE05, RvdAtH], a basic activity has

a little internal workflow that tracks its execution status. They also have a precondition

that enables them to start. This precondition depends on the workflow structure. We

model many kinds of activities. One distinction is between manual and automatic activi-

ties. Automatic activities have the the following states {created, started, completed,

failed}. All activities start in the created state. Then, if the precondition is satisfied

(e.g. the previous activity is completed), they transition to the started state, which can

result into a completed activity or a failed one. Manual activities have an additionial

state called offered. A manual activity transition from created to offered as it has

to be assigned to a human performer (our model does not model the different assign-

ment strategies described in [RHE05]). When assigned, the activity transitions to the

the started state, which, again, can result into a completed activity or a failed one.

The state of each activity is stored in an artifact attribute called ‘status attribute’.

In addition to the manual/automatic distinction, an activity might also modify

some artifact data attributes, called ‘output attributes’ of an activity. Note that we as-

sume the output attributes of all activities to be pairwise disjoint. In case of an activity

that modifies data, it does so when transitioning to the completed state. The data val-

ues of a set of ‘output attributes’ of an activity is set through a postcondition using data

attributes and status attributes and making use of database predicates and arithmetic

operations as in service postconditions in Chapter 2.

Definition 5.1.1. A basic activity is a tuple {type,O,ψ,exc_hnd}, where type can be

either automatic or manual, O is a set of output attributes, ψ is a postcondition referring

to output artifact attributes as primed variables , and exc_hnd is an exception handling

policy.

97

Exception handling policies will be introduced in Subsection ??. The intuitive

semantics is stated above, and the formal semantics will be given in Section 5.2 with a

reduction to the service-based model of Chapter 2.

5.1.2 Sub-workflow

A sub-workflow (or subflow) is a composite activity formed by a sequence of

activities. Sub-workflows form a hierarchy that is exploited for exception handling

(Subsection 5.1.4) and variable scopes of data conditions (Subsection 5.3). This use

of the hierarchy of workflows is present in real world patterns as presented in [RvdAtH]

and [RtHEvdA05]. Besides the hierarchy, a subflow is simply a control structure that

forces activities (either basic or composite) to be performed in a fixed order. When the

precondition for a subflow is satisfied, every activity has to wait for its predecessor to be

completed (i.e. let a be an activity and pa its predecessor in the subflow sequence, the

the precondition for a simply states that pa has to be in state completed). The subflow

is completed when the last activities reaches the state completed.

Definition 5.1.2. A sub-workflow is a tuple {σ ,exc_hnd} where σ is a sequence of

activities and exc_hnd is an exception handling policy.

Also, every workflow is defined as being the root subworkflow of the above

mentioned hierarchy.

5.1.3 Splits

We have two kinds of composite activities in our model that split the flow of

execution: AND-Splits and XOR-Splits. AND-Splits can have any number of branches.

Each branch is a sequence of activities (like a subflow). Branches in an AND-Split

execute in parallel and in any possible interleaving order. The AND-Split is considered

complete when all branches are completed.

Definition 5.1.3. An AND-Split is a unary tuple {B}, where B is a set of sequences of

activities.

98

XOR-Splits have two branches, and are associated to a logical condition on data

and status attributes, that can refer to database predicates and arithmetic operations.

The two branches are associated to a possible evaluation of the condition (either true

or false). A branch precondition is the conjunction of the precondition of the XOR-

Split with the associated evaluation of the XOR-Split condition. The execution of the

branches in a XOR-Split is exclusive: unrespective of the XOR condition, a branch

cannot start executing if the other branch is already started. A XOR-Split is considered

completed when the executing branch is completed.

Definition 5.1.4. A XOR-Split is a tuple {btrue,b f alse,χ} where btrue and b f alse are two

sequences of activities, and χ is a condition on artifact attributes.

5.1.4 Exceptions

Exceptions in our model have a very important role. As proposed in [AM00]

and implemented in an execution engine [DBL01], in our model exceptions are the only

way to generate cycles in the workflow. This assumption is especially relevant when

paired with the considerations that led to the development of the feedback freedom class

of business processes.

The semantics of exceptions in AWEs, is based on the idea of exception handling

policies. These policies specify a way to react to the fact that an activity fails. We already

saw how basic activities can fail.

We adopted the most commonly supported exception handling patterns from

[RvdAtH] and provided a way to choose between these policies in the workflow activi-

ties. The possible policies are:

1. restart: if the activity fails, it is restarted (i.e. put in state started);

2. reallocate: if a manual activity fails, it is offered to potentially another humen

performer (i.e. put in state offered);

3. fail: the parent sub-flow (or the whole business process) fails.

Note that, for basic activities, the only thing affected by the restart or reallocation

is its status attribute. In the case, however, that a whole subflow fails, the restart handling

99

conditions resets all statuses of the contained activities to created and possibly also

their output attributes. This implicitly creates a ‘cycle’ in the workflow (i.e. some

completed activities will have to be completed again, possibly with different outcomes).

Many other handling patterns are described in [RvdAtH], we choose however the most

commonly implemented in workflow execution engines.

5.2 Semantics of AWEs

In this section, we define the semantics of AWEs by reducing it to the lower-level

service-based model of Chapter 2.

5.2.1 Attributes

Assuming a database schema, the first thing we have to define are the artifact

attributes. From Subsection 5.1.1 it should be clear that, for each basic activity a there

is a status attribute (that we call statusa) and a set of output attributes (Oa). Since

an unhandled exception can possibly result in te failure of the whole business process,

we decide to explicitly store the status of the whole business process in an attribute

(global_status) that can take the values {started, completed, failed}. Remember

that the output attributes of basic activities are pairwise disjoint. It follows that the set

of attributes A is:
⋃

a∈B

(statusa∪Oa)∪{global_status}

with B being the set of all basic activities.

5.2.2 Basic activities services

The evolution of the workflow is specified by the changes in the the basic ac-

tivities. It follows that we have a service for each such transitions. In the hierarchical

structure of the workflow, every basic activity has a composite activity that controls it.

The controlling composite activity (e.g. a subflow or a XOR-Split) implicitly provides

a precondition to the basic activity. The basic activity is allowed to leave the created

100

state only when this precondition is true. For instance, the precondition of the first ac-

tivity of a XOR branch has to include the branch condition. We will describe how the

composite activities assign precondition later. Now we show the services associated to

an automatic basic activity a. Let P(A) be the following formula depending on a set of

attributes A:
∧

a∈A

(a′ = a).

For each basic activity we have:

1. A service created−to−starteda with precondition πa∧statusa = ”created” and

postcondition status′a = ”started”∧P(A \{statusa});

2. A service started− to− completeda with precondition statusa = ”started” and

postcondition status′a = ”completed”∧P(A \ ({statusa}∪Oa))∧ψa, with ψa

being the postcondition on the output attributes Oa;

3. A service started−to− f aileda with precondition statusa = ”started” and post-

condition status′a = ”failed”∧P(A \{statusa});

For manual activities there is an extra state between created and started, so

the services are:

1. A service created− to− o f f ereda with precondition πa ∧ statusa = ”created”

and postcondition status′a = ”offered”∧P(A \{statusa});

2. A service o f f ered− to− starteda with precondition statusa = ”offered” and

postcondition status′a = ”started”∧P(A \{statusa});

3. A service started− to− completeda with precondition statusa = ”started” and

postcondition status′a = ”completed”∧P(A \ ({statusa}∪Oa))∧ψa, with ψa

being the postcondition on the output attributes Oa;

4. A service started−to− f aileda with precondition statusa = ”started” and post-

condition status′a = ”failed”∧P(A \{statusa});

101

The transitions from the state failed will be describe in the next subsection.

Now we define how composite activities compute preconditions for their children ac-

tivities. First, we define the concept of completing condition. Every activity a has a

different completing condition γa defined in the following way:

1. If a is basic activity then γa = statusa = ”completed”;

2. If a = {σ ,exc_hnd} is a subflow, let l be the last activity in σ , then γa = γl;

3. If a = {B} is an AND-Split, let L be the set of the last activities in the sequences

in B, then γa =
∧

l∈L γl;

4. If a = {btrue,b f alse,χ} is a XOR-Split, let ltrue (resp. l f alse) be the last activity of

btrue (resp. b f alse), then γa = ltrue∨ l f alse.

Now we can define the preconditions of all basic activities recursively on the

hierarchy of composite activities. Clearly, every composite activity has a precondition

too.

1. In a subflow a = {σ ,exc_hnd}, πσ0 = πa, then ∀i > 0(πσi = γσi−1);

2. In an AND-Split a = {B}, for every branch 〈bi〉 ∈ B, we have πb0 = πa and ∀i >

0(πbi = γbi−1);

3. In a XOR-Split a = {btrue,b f alse,χ}, let 〈ti〉 = btrue and 〈 fi〉 = b f alse, then πt0 =

πa ∧ χ ∧ status f0 = ”created” and ∀i > 0(πti = γti−1). Also, π f0 = πa ∧¬χ ∧

statust0 = ”created” and ∀i > 0(π fi = γ fi−1).

The root sub-workflow r in the hierarchy has a precondition πr = true and an

extra service is added at the end that updates the global status.

• A service global_complete with precondition γr and postcondition

global_status′ = ”completed”∧P(A \{global_status});

Note. The introduction of activities that always fail or that never fail is trivial.

102

5.2.3 Exception handling services

The services that we defined for basic activities will never change the state of

a basic activity that failed. We have now to account for th exception handling policies

introduced in Subsection 5.1.4.

We first deal with the case of manual basic activities with the reallocate pol-

icy. To handle these activities we simply add a service:

• A service f ailed− to−createda with precondition statusa = ”failed” and post-

condition status′a = ”created”∧P(A \{statusa});

Whenever a basic activity fails its exception gets forwarded to its parent subflow

and handled with the parent policy. This is handled together with the restart case in the

following way. First we define the concept of scope. We call the scope Sa of an activity

a the following set of basic activities:

• If a is a basic activity then Sa = {a};

• If a = {σ ,exc_hnd} is a subflow, then Sa =
⋃

s∈σ Ss;

• If a = {B} is an AND-Split, then Sa =
⋃

s∈B Ss;

• If a = {btrue,b f alse,χ} is a XOR-Split, then Sa =
⋃

s∈btrue
Ss∪

⋃

s∈b f alseSs
.

Whenever a basic activity a fails, we call anca the closest ancestor (possibly a

itself) s.t. the exception handling policy of anca is restart. If there is no such ancestor

we add a service that fails the whole workflow:

• A service f ailed− to− global f aila with precondition statusa = ”failed” and

postcondition global_status′ = ”failed”∧P(A \{global_status})

If anca exists, intuitively, if it is a basic activity, we just restart a, if anca is a

subflow we restart the whole subflow. We implement this strategy by introducing the

following service for every basic activity with a exception handling policy of fail or

restart.

103

• A service f ailed− to− restarta with precondition statusa = ”failed” and the

following postcondition:

∧

a∈Sanca

(status′a = ”created”∧
∧

d∈Oa

d = null)∧P(A \
⋃

a∈Sanca

({statusa}∪Oa)

Note how restarting a scope, not only changes the state of all the basic activities

in the scope of the restarted subflow, but also resets the output attributes of those activ-

ities. We will see in Section 5.3 how this is crucial to ensure feedback-freedom of the

business processes expressed as AWEs.

5.2.4 Semantics

In the previous subsection we defined, starting from an AWE business process,

a set of attributes A and a set of services for each basic activity b , that we will call

Sb, that includes the transitions from the created state to completed or failed state,

along with the service implementing the exception handling policies.

Since our service-based model assumes infinite runs we add two dummy services

{completed_dummy, f ailed_dummy} that propagates the final state of the workflow

(completed or failed):

• A service completed_dummy with precondition global_status = ”completed”

and postcondition P(A);

• A service f ailed_dummy with precondition global_status = ”failed” and post-

condition P(A);

Definition 5.2.1. Let DB be the database used in an AWE business process BP with

basic activities in B. Then we define an artifact schema S to be {A ,DB}. We have

then that the service based translation of BP is an artifact system {S,{Sb|b ∈ B} ∪

{completed_dummy, f ailed_dummy},Π}, with:

• S being the artifact schema {A ,DB};

• {Sb|b ∈B} being all the services defined for the basic activities in BP; and

104

• Π be the following precondition:

global_status = ”created”∧
∧

a∈B

(statusa = ”created”∧
∧

o∈Oa

o = null)

The runs of BP are then all and only the runs of its service-based translation.

5.3 Expressive power comparison

In this section we explore the expressive power of AWEs. Let us first modify the

AWE model by not resetting all output attributes whenever a subflow is restarted. We

call this model AWE*. It turns out that AWE* is as powerful as the sevice-based model

described in Chapter 2, using only a constant number of extra attributes. More formally,

we say that two runs ρ and ρ ′ are equal up to constant-stutter iff there exists a linear

function f (i) s.t. ∀i(ρ(i) = ρ ′(f (i))). Then we have:

Theorem 5.3.1. Artifact systems have the same expressive power of AWE*, up to

constant-stutter.

Proof: First, we note that AWE* semantics is expressed as a service-based artifact sys-

tem, so we just need to prove that any service-based business process p can be expressed

as an AWE*. The first observation is that we can rewrite p in p′ that uses a single ser-

vice. Let Σ be the set of services in p, we define Σ′ = {s} as the set of services in p′,

where s has the following precondition:

πs =
∨

t∈Σ

πt .

In order to define the postcondition of s we define a set called C(Σ). The formulas in

C(Σ) are implication where the left side is of the following form. Let σ ∈ 2Π, with Π

being the set of all preconditions of the services in Σ, and Ψσ be the set, given a σ ∈ 2Π,

of all postconditions ψi of a service i s.t. σ(πi) = 1, then we the following postcondition

for s:
∧

σ∈2Π

∧

ψi∈Ψσ

((
∧

σ(π)=1

π ∧
∧

σπ=0

π)→ ψi)

It is easy to see that every run of p is a run of p′ and vice versa.

105

Let us consider the case with no global precondition in p (the extension to this

case is trivial). Now, we can build an AWE* business process in this way. The data

attributes are all the artifact attributes x̄p of p. Let r be the root worflow with exception

handling policy restart and a sequence of activities that includes two activities ap and

a f . The activity a f is a basic activity that always fails and has an exception handling

policy of fail. The activity ap is a basic activity that never fails and has x̄p as output

attributes, πs ∧ψs as postcondition, and an exception handling policy of fail. It is

easy to see that, excluding the status attributes for the global state and the two basic

activities, every run ρA of the above AWE* process has a corresponding run ρp′ of p′

s.t. ρA(i) = ρp′(5i̇+ 2) and vice versa. The stuttering accounts for the instants that

the AWE* process uses to transition the states of the activities and restarting the root

subflow. Note also that every blocking run of p′ has a corresponding blocking run in the

AWE* system and vice versa. This follows from the fact that ap never fails, so in any

instant when its state is started the only available service is its completion service that

blocks the run as its postcondition is unsatisfiable. �

Now we describe how AWEs relate to the feedback freedom concept. First we

introduce two classes of first-order conditions:

Definition 5.3.2. We say that a first-order formula φ on the attributes of an AWE is

hierarchy-safe iff for each pair of attributes a and b in φ , let ba (resp. bb) be the basic

activity that has a (resp. b) as a status or output attribute, then ba is in the scope of an

ancestor of bb or viceversa.

And,

Definition 5.3.3. We say that a first-order formula φ on the attributes of an AWE is

hierarchy-safe w.r.t. a basic activity b iff for each attribute a in φ , let ba be the basic

activity that has a as a status or output attribute, then b is in the scope of an ancestor of

ba.

Intuitively, hierarchy-safe conditions limit the interactions between siblings of

the subflow hierarchy. We will show that forcing conditions in the specification and

temporal properties to be hirarchy-safe guarantees feedback-freedom.

106

Definition 5.3.4. We call AWEs the AWE where:

• any postcondition of a basic activity a is hierarchy-safe w.r.t. a; and

• any XOR condition is hierarchy safe.

We then have:

Theorem 5.3.5. Let Γ be an AWEs, and ϕ be a temporal property whose first-order

components are hierarchy safe, then (γ,ϕ) is feedback-free.

Proof: Let us consider, in a computational graph of an AWEs two different equivalence

classes [xi] and [x j] of the same artifact variable in the same connected component. Let

i and j be the smallest instants in the respective spans. We know, also, that, since x has

a different value, it means that an ancestor subflow has been restarted between i and j.

Moreover, the existence of a path between [xi] and [x j] means that it has to go through

an attribute y belonging to an ancestor that was not restarted. It follows that the span of

[yi] has to include the spans of both [xi] and [x j]. Let us assume by contradiction, that

this is not the case. This would mean that y was reset in an instant included in the span

of either [xi] or [x j]. This is not possible as, being y an attribute of an ancestor, it would

have reset the value of x. �

This Theorem gives a useful necessar condition for feedback freedom. We will

exploit this property when randomly generating feedback free systems in Chapter 7.

Part II

Feasibility Study

107

6 Verifier Implementation

This chapters details the implementation of a verifier prototype based on the

ideas presented in Chapter 4. We will describe the implemetation of the algorithm intro-

duced in Section 4.3, that supports verification of artifact systems with database schemas

with key constraints and arithemetic operations, incurring in the hyperexponential com-

plexity only when arithmetic is involved. The architecture of the prototype is general

enough to support the implementation of all the verification algorithms in Chapter 4.

During the description of the design we will highlight how to modify the code to imple-

ment the other algorithms.

The chapter starts with a description of the high-level architecture of the proto-

type, before delving into the detailed explanation of the implementation of the verifi-

cation algorithm. A final section introduces two optimizations that compensate for the

inefficiencies of the first-cut implementation.

6.1 Architecture

In this section we will describe the high level architecture of the prototype ver-

ifier. We implemented the verifier prototype in Java making use of external libraries

whenever possible. The prototype takes as input an artifact system as presented in Chap-

ter 2 and an LTL-FO property property to verify. Its output is a boolean value containing

the result of the verification, and, in case the property is not satisfied, it provides a sym-

bolic run acting as a counterexample.

Besides some utilities (e.g. user-friendly interfaces), the prototype is divided

into three main modules: parser, pre-verification setup, and verifier. These modules

have different dependencies from each other and from external libraries.

108

110

• support for linear arithmetic constraints;

• support for LTL and logical operators;

• on-the-fly normalization of schemas with unary keys;

• semantic checks of database predicates in formulas (name and arity);

• conversion of formulas to the normalized database schema;

• for first-order formulas, rewriting to DNF;

• for LTL formulas, identification of first-order components;

The output of the artifact system parser submodule is an object structure that represents

a system where every service has preconditions and postconditions expressed in DNF

and that refer to the correct set of predicates and arithmetic constraints. The output of the

LTL-FO parser, when it parses an temporal property, is an object structure representing

an LTL-FO formula with all the first-order components expressed in DNF and that refer

to the correct set of predicates and arithmetic constraints.

6.1.2 Pre-verification setup

The pre-verification module computes the information needed by the verifica-

tion algorithm, performs some computation that can be done in advance, and sets up

additional data structures.

The information needed by the verifier are:

• the set of symbolic transitions; and

• the Büchi automaton of the negation of the property.

The set of symbolic transitions is computed using the procedure described in Section

2.3. Unsatisfiable symbolic transitions are discarded; and for the remaining ones we

precompute which first-order components of ¬ϕ are implied. This last information is

useful as we do not have to compute this satisfiability in the internal loop of the verifier

module.

111

As usual with verification algorithm based on model checking, the verifier mod-

ule looks for a counterexample of ϕ , which means looking for a symbolic run satisfy-

ing ¬ϕ . The satisfaction of ¬ϕ of a symbolic run is checked with the use of a Büchi

automaton. The property BA generation submodule rewrites ¬ϕ into ¬ϕ ′, which sub-

stitutes first-order components with propositional variables. It then invokes the external

library LTL2BA [jpf] from the Java Pathfinder project to generate the BA¬ϕ , used by the

verifier module.

An additional index data structure is built in order to speed up access to sym-

bolic transitions in the verifier internal loop. The details of this index are specified in

Subsection 6.3.2.

6.1.3 Verifier

The verifier module implements the verification algorithm as described in Sec-

tion 6.2. The implementation uses the external library lp_solve [lps] to verify the sat-

isfiability of systems of linear inequalities. Lp_solve is implemented in C++ and we

use the provided JNI interface to access it from Java. In the module implementation,

a simple Java class acts as interface performing data conversion from the Java object

structure representing the linear inequalities atoms to the vector representation required

by the JNI interface of lp_solve.

Special care had to be taken in the translation of strict inequalities of the form

>, < and 6=. Lp_solve does not support those inequalities. This is because the 128bit

double datatype used in the C++ implementation does not have unlimited precision.

This resulted in the following rewritings:

• l(x̄)> c becomes l(x̄)≥ c+g;

• l(x̄)< c becomes l(x̄)≤ c−g;

with l(x̄) being a linear combination for variables in x̄ and g the chosen granularity

(2−16382 in our implementation). We will see in Subsection 6.2.2 how we avoid calling

lp_solve with 6=-inequalities.

112

6.2 Verification algorithm

The theoretical foundations of the verification algorithm implemented are de-

scribed in Section 4.3. At a high-level, there is the idea, common to all model checking

techniques, to look for a counterexample, i.e. a run that satisfies the negation of the

property to verify. Since we work with infinite state systems, we have to work with

symbolic representations of runs. We then exloit the result in Lemma 4.3.8, that we

restate for convenience:

Lemma 6.2.1. In an artihmetic-key-feedback-free artifact system and property with key

constraints and arithmetic, there exists a run ρ satisfying ¬ϕ iff

1. there exists a symbolic run prefix 〈ψi〉i< j+n s.t. [η]|
j+n
j (〈ψi〉i≤ j+n)∧ x̄ j = x̄ j+n is

satisfiable, and

2. for such 〈ψi〉i< j+n, there exists a run {qi}i≤ j+n of B¬ϕ on {σi}i≤ j+n (i.e. the run

of truth assignments for FO components in ¬ϕ given the run {ψi}i< j+n) such that

for some accepting state r. q j = q j+n = r.

Our algorithm searches the space of symbolic runs (i.e. sequences of symbolic

transitions 〈ψi〉) looking for a run satisfying the above conditions. In order to perform

the search, we maitain a state composed of a reduced form of the inherited constraints

up to a certain instant and the current state in the Büchi automaton of ¬ϕ .

The algorithm structure is very similar to the nested depth first search used in

standard model checking. The standard depth first search algorithm explores all run

prefixes of a transition system (the artifact system in our case) while running the BA of

the negated property on the generated prefix. Then, every time the BA is on a final state,

it spawns another depth first search that looks for a cycle back to the originating state.

The differences of our algorithm w.r.t. the standard depth first search pertain to

the maitenance of the reduced inherited constraints and the acceptance conditions.

• The procedure used to compute redm([η]|i), given a current reduced form

redm([η]|i−1) and a symbolic transition ψi, is the one detailed in Subsection 4.3.1;

• Satisfiability is checked by separating the arithmetic portion of the inherited con-

straints from the database part. The details are in Subsection 6.2.2;

113

• When looking for a cycle at instant j with a BA final state s j, the algorithm starts

maintaining inherited constraints that aways keep ¯[x j] as free variables in addition

to the current ones. Then, when in the nested search, it just looks for the first

configuration s.t. the state is s j and redm([η]|
j+n
j (〈ψi〉i≤ j+n))∧ ¯[x] j =

¯[x] j+n is

satisfiable.

Note how the final condition comes from Lemma 4.3.8. A more detailed description

of the verification algorithm, along with the pseudocode, is given in Subsection 6.2.1.

Clearly, this is an implementation of the algorithm described in Subsection 4.3. We also

implemented the algorithms in Section 4.1 (for artifact systems with no dependencies

and no arithemtic) and 4.2 (for artifact systems with unary keys and no arithmetic). The

difference between the implementation of these algorithm and the one presented here

is simply in the procedure for computing the reduced form (as explained in Chapter

4) and checking satisfiability (eliminating the arithmetic solver and no handling of key

constraints).

6.2.1 Algorithm pseudocode

Algorithms 1 and 2 show the pseudocode of our algorithm. In this subsection

we explain the pseudocode in detail.

The main procedure, lines 1-8, initializes the data structures for the search and

calls the dfs procedure starting from every possible dsjunct of the global precondition.

In our algorihm the inherited constraints (referred to as icon in the pseudocode) are

always with equivalence class variables (i.e. we store the reduced form of [η] and not

of η). We maitain a simple data structure keeping track of the correspondence between

the current artifact variables at instant i, x̄i and the equivalence classes ¯[x]i in the icon

representation. For clarity’s sake, the maintenance of this data structure is omitted in the

pseudcode. Note that line 5, calls the procedure create_eqclasses, to put the global

precodition disjunct in the above defined form. Line 7 invokes then the depth first search

algorithm starting from the state containing the precondition disjunct and the initial state

of BA¬ϕ .

114

The depth first search procedure generates all possible satisfiable prefixes and,

upon reaching a final state for BA¬ϕ , it spawns a nested depth-first search for a cy-

cle as defined at the beginning of the section. The input of the dfs procedure is a

state 〈icon(¯[x]),ba_state〉. Lines 12-13, makes sure that we do not visit a state more

than once. Note that we consider 〈icon(¯[x]),ba_state〉 ∈ visited if there is a state

〈icon′(¯[x]),ba_state〉 where icon and icon′ are syntactically equal up to a one-to-one

renaming of existentially quantified variables. If ba_state is a final state, lines 14-17,

spawn a search for a cycle by calling the procedure cycle, described below. Lines 18-25

generate all possible next states 〈iconn,sn〉. In order to do this, line 18 iterates over all

the possible symbolic transitions, while lines 19-20 use the procedure detailed in Sub-

section 4.3.1 to create the reduced form of the inherited constraints of the concatenation

of the current prefix and ψ . Line 21 prunes unsatisfiable prefixes. Lines 22-25 iterates

over all possible transitions from ba_state in BA¬ϕ . Line 23 prunes transitions that are

not satisfied by the current symbolic transition ψ , and line 24 continues the search.

The cycle procedure is shown in Algorithm 2. It takes as input a state, a final

state from which the cycle starts (called knot) and the set of variables ¯[x j] that were

current when the cycle started. Analogously to dfs the cycle procedure continues

generating satisfiable prefixes. There are two differences with dfs, though. The first is

that, when computing the reduced form in line 7, it considers ¯[x′]∪ ¯[x j] as free variables.

This is necessary to maitain the reduce form of the cycle inherited constraints as defined

in Chapter 4. The other difference is then, before recursing in line 11, line 10 checks if

the next configuration creates a cycle in BA¬ϕ by reaching back to the knot state and if

redicon(¯[x])∧ ¯[x] = ¯[x j] is satisfiable. Note how this directly corresponds to condition 1

of Lemma 4.3.8.

6.2.2 Checking satisfiability

In Lemma 3.2.3 we proved that we can check satisfiability independently of the

database an arithmetic portions of the inherited constraints. The technique outlined in

Lemma 3.2.3, however, assumes to check satisfiability for all the possible equality types

of the set of common variables. Our implementation exploits the fact that we only allow

key dependencies in the following way. As in Section 4.3, let us call [ηdb] the subset

115

of terms that either refer to database predicates or to equalities and 6=-inequalities, and

[ηa] the subset with only equalities, 6=-inequalities and arithmetic terms. The main idea

is to identify the only variables whose equality type can affect the satisfiability of [ηdb].

Since we only have key constraints, an equality x = y can cause a contradiction in [ηdb]

only if [ηdb] contains:

1. x = c1 and y = c2, with c1 and c2 different constants; or

2. p(x̄) and ¬p(ȳ), with x ∈ x̄ at position i and y ∈ ȳ at position i; or

3. x 6= y; or

4. p(x,w) and p(y,z), with the first attribute being a key for predicate p.

Analogously, an inequality x 6= y can cause a contradiction in [ηdb] only if [ηdb] contains:

1. x = y; or

2. x = c and y = c; or

3. p(w,x) and p(z,y), with the first attribute being a key for predicate p.

We call critical pairs the set of pairs of variables that satisfy any of the above condition.

It follows that we only need to check only the equality types for the critical pairs

in order to check satisfiability of [η].

Lemma 6.2.2. Let C be the set of critical pairs, then [η] is satisfiable iff there exist an

equality type eq(C) for C s.t. [ηdb]∧ eq(C) is satisfiable and [ηa]∧ eq(C) is satisfiable.

Our algorithm identifies the critical pairs, it then generates for all possible equal-

ity types and checks independently the satisfiability of [ηdb]∧ eq(C) and [ηa]∧ eq(C).

Remember that we check the satisfiability of [ηa]∧ eq(C) using the lp_solve library

(cfr. 6.1.3), which does not support 6= constraints. It follows that we actually generate

equality types in the form of constraints of =, > and <, and everytime we check satis-

fiability of the database portion we simply consider >-constraints and <-constrains as

6=-inequalities.

In order to check the satisfiability of [ηa]∧ eq(C), we simply call the external

solver. The following details the satisfiability check of [ηdb]∧ eq(C).

116

Checking satisfiability of [ηdb]∧ eq(C)

Let us assume first that we have no data dependencies. Our algorithm computes

the equivalence classes eq of [ηdb]∧eq(C) w.r.t. to equality predicates. If x is a variable

or a constant in [ηdb]∧eq(C), we call [x] its equivalence class. At this point, if there is a

contradiction of the form [x] = c1 6= c2 it is easily identified, by looking for equivalence

classes with more than one constant.

After this first step we scan [ηdb]∧eq(C) looking for contradictions of the form:

1. x 6= y, with [x] = [y]; or

2. p(x̄)∧¬p(ȳ), s.t. ¯[x]|k = ¯[y]|k with ¯[x]|k (resp. ¯[y]|k) being the vector of equivalence

classes of the variables in the key attributes of x̄ (resp. ȳ).

When we introduce key constraints, we may have some additional equalities that

are introduced by the data dependencies. In order to take those into account, we modify

the previous procedure simply by considering the additional equalities in the compu-

tation of the equivalence classes. We call application of a key constraint on predicate

p w.r.t. equivalence classes eq, the generation of the equality w = z from the literals

p(x,w)∧ p(y,z) with [x] = [y] w.r.t. eq. Our algorithm then proceeds in the following

way:

1. computes the equivalence classes eq of [ηdb]∧ eq(C) w.r.t. to equality predicates;

2. computes all the equalities implied by the key constraints by looking for applica-

tions of key constraints on [ηdb]∧ eq(C) until no more equalities can be added to

eq;

3. if eq has a contradiction, output f alse;

4. looks for a contradiction in [ηdb]∧ eq(C) w.r.t. eq as described above: if found,

output f alse, otherwse ouput true.

Theorem 6.2.3. The above procedure returns true iff [ηdb]∧ eq(C) is satisfiable.

Proof: The procedure is simply a variation of the chase. Instead of materializing differ-

ent tuples as a result of the application of a key constraint, we keep track of the equalities

117

in the equivalence classes. Then we verify that we did not generate any contradiction by

checking the atoms w.r.t. the equivalence classes. �

6.3 Optimizations

In this section we describe two optimizations that help speed up the execution of

the verification algorithm by optimizing the two most common operations performed in

the inner loop of our nested depth first search algorithm. The first one is used to enable

the use of hashing when checking if a state has been visited. The second exploits a

heuristic to greatly prune the set of symbolic transitions to be tried when looking for a

satisfiable prefix.

6.3.1 Inherited constraint hashing

In our verification algorithm we have to check at every iteration if a state has

been already visited (line 12 of Algorithm 1). This check involves computing if two

representations of the inherited constraints are equivalent. The notion of equivalence

is complicated by two facts: 1) the inherited constraint representations use equivalence

classes as variables, and 2) two inherited constraints are considered equivalent iff there

exists a one-to-one renaming of the existentially quantified variables that makes the two

formulas syntactically equal up to literal reordering.

The use of equivalence classes implies that a free variable [x j] might represent

more than a single original free variable, e.g. it might refer to variables x j and y j. It

follows that when comparing two inherited constraints, we consider two free variables

to be equal if their equivalence class is associated to the same set of artifact attributes

value in the current instant. We say that [η1]≃ [η2] whenever two inherited constraints

are equal up to literal reordering and considering free variables equal as described above.

It follows that, the algorithm that checks equivalence (≈) of two inherited con-

straint representations [η1] and [η2] performs the following operations:

1. computes the set M of one-to-one renamings of the existentially quantified vari-

ables of [η1] into existential variables of [η2];

118

2. if ∃µ ∈M s.t. µ([η1])≃ [η2], then [η1]≈ [η2]

In order to avoid the expensive linear scan of the whole set of visited states

at every iteration, we designed a hashing function compatible with this notion of ≈-

equivalence. Assuming the existence of hashing functions for sets and variables (we

used the standard Java implementation for hashes of sets and strings, respectively), we

define the following hashing functions h(), given the current instant j:

• with [x] a free variable, hash([x]) = hash(seta([x])), with seta([x]) being the subset

of [x] of variables of instant j;

• with [y] an existential variable, hash([y]) = 0;

• hash(p(¯[x])), normal implementation of an hashing function for literal using the

above hashes for the variables;

• hash([η]) = hash(setl([η])), with setl([η])) being the set of literals in [η].

Storing the visited states in a hash table resulted in a huge improvement in the

performance of our algorithm.

6.3.2 Symbolic transition index

In our verification algorithm we prune unsatisfiable symbolic prefixes in order

to limit the search space, e.g. line 5 and 21 of Algorithm 1. As described in subsec-

tion 6.2.2, the satisfiability check can be very complex, and sometimes it is possible

to quickly exclude symbolic transitions whose concatenation with the current inherited

constraints will surely result in a contradiction.

Our technique considers the contradictions that come from equalities and 6=-

inequalities with constants. For instance, if an inherited constraint includes the literal

[xi] = c, with [xi] being a free equivalence class variable that contains the current value

of attribute x, then no symbolic transition containing x 6= c (or x = c′, with c′ 6= c) can be

concatenated. By extending this reasoning, we will show how to build an index structure

for symbolic transitions that, given a set of equalities and 6=-inequalities with between

current attribute values and constants, retrieves a superset of the symbolic transitions

that will be satisfiable together with the current inherited constraints.

119

Let us call C the set of all the constants in the symbolic transitions, the index

structure contains, for each formula f : x = c (or x 6= c), with x ∈ x̄ and c ∈C, the list of

all symbolic transitions ψ s.t. ψ ∧ f is satisfiable. It is clear that the size of the index

is polynomial w.r.t. the number of symbolic transitions, and, knowing C, it can be built

with a single scan of the symbolic transition set.

At a high level, in order to prune the candidate symbolic transitions (i.e. set of

symbolic transitions on which we apply the full satisfiability algorithm), we exploit the

above structure by taking the intersection of the sets associated with all the equalities

and 6=-inequalities in the current inherited constraints. More formally, let [η] be the

current inherited constraints, and let e : x = / 6= c be an equality and inequality with

x ∈ x̄ and c ∈ C, we say that [η] implies e iff [x] = / 6= c is an atom in [η]. Now, let

S be the set of all symbolic transitions, let index(e) be the set of symbolic transitions

returned by the index structure for equality (or 6= −inequality) e, the set of candidates

for [η]:

S∩
⋂

e∈{e implied by [η]}

index(e).

120

Algorithm 1: Verifies that Γ |= ϕ , part 1.

Input: Ψ(Γ,ϕ) is the set of symbolic transitions of (Γ,ϕ),

ΠΓ is the set of disjuncts of the DNF of the global precondition of Γ,

BA¬ϕ = {Q, i,δ ,F} is the BA of ¬ϕ

begin1

visited = ∅2

found = f alse3

foreach π ∈ΠΓ do4

icon(¯[x])⇐ create_eqclasses(π)5

if satisfiable(icon(¯[x])) then6

dfs(〈icon(¯[x]), i〉)7

return ¬found8

end9

procedure dfs(〈icon(¯[x]),ba_state〉)10

begin11

if 〈icon(¯[x]),ba_state〉 ∈ visited then return12

visited⇐ visited ∪{〈icon(¯[x]),ba_state〉}13

if ba_state ∈ F then14

visited2⇐∅15

cycle(〈icon(¯[x]),ba_state〉,ba_state, ¯[x])16

if found then return17

foreach ψ ∈ΨΓ do18

newicon(¯[x], ¯[x′])⇐ icon(¯[x])∧ create_eqclasses(ψ)19

redicon(¯[x])⇐ reduce(newicon(¯[x], ¯[x′]), ¯[x′])20

if not satisfiable(redicon(¯[x])) then continue21

foreach 〈ba_state,θ ,next〉 ∈ δ do22

if ψ 2 θ then continue23

dfs(〈redicon(¯[x]),next〉)24

if found then return25

end26

121

Algorithm 2: Verifies that Γ |= ϕ , part 2

Input: 〈icon(¯[x]),ba_state〉 is current state(inherited constraints and BA

state),

knot is the final BA state that we are trying to reach,

¯[x j] are the free variables in the first instant of the cycle.

procedure cycle(〈icon(¯[x]),ba_state〉, knot, ¯[x j])1

begin2

if 〈icon(¯[x j], ¯[x]),ba_state〉 ∈ visited2 then return3

visited2⇐ visited2 ∪{〈icon(¯[x j], ¯[x]),ba_state〉}4

foreach ψ ∈ΨΓ do5

newicon(¯[x], ¯[x′])⇐ icon(¯[x j], ¯[x])∧ create_eqclasses(ψ)6

redicon(¯[x])⇐ reduce(newicon(¯[x], ¯[x′]), ¯[x′]∪ ¯[x j])7

if not satisfiable(redicon(¯[x])) then continue8

foreach 〈ba_state,θ ,next〉 ∈ δ do9

if ψ 2 θ then continue10

if next = knot and satisfiable (redicon(¯[x])∧ ¯[x] = ¯[x j])11

then found⇐ true

cycle(〈redicon(¯[x]),next〉, knot, ¯[x j])12

if found then return13

end14

7 Experimental evaluation

In this chapter we describe the experimental evaluation we performed on the

verifier prototype we described in Chapter 6. Since we were not able to find a large

collection of real-world data-aware business process specifications, we resorted to au-

tomatic generation. In order to generate realistic specifications and properties, we de-

vised a generation algorithm based on the high-level model described in Chapter 5 and

statistics extracted from real world business process specifications. The first part of this

chapter describes our data generation procedure. Then, after introducing the execution

enviroment, we describe the experiments we performed and the results we obtained in

terms of running time of the verification of various properties.

7.1 Business process generation

The generation of busines processes follows the high-level model developed in

Chapter 5 and then exploits statistics extracted from [TLR07] in order to generate realis-

tic processes. The generation algorithm has two phases. The first follows the hierarchi-

cal organizations of acyclic workflow with exceptions (AWE) to generate the structure

of the workflow. The second phase generates the data conditions on XOR-Splits and

basic activities that modify data attributes.

In order to generate the workflow structure we extracted from [TLR07] the fre-

quencies of the following basic patterns: XOR-Splits (15%), AND-Splits (15%), and

basic activities (70%). Given the number of basic activities to generate as input, we

start generating patterns with the above mentioned frequencies. When we generate a

composite activity (XOR-Splits, AND-Splits), the number of basic activities it contains

is randomly picked from a uniform distribution of the number of activities we still have

122

123

to generate. A basic activity can be either manual or automatic. In our experiments

we used a 50% chance as we could not extract this frequency from [TLR07]. Also, the

patterns in [TLR07] do not contain the concept of sub-workflow, so at each generation

step there is a chance (in our experiments we used 30%) to generate a sub-workflow,

that is then treated like another composite activity.

Every activity is randomly chosen as being one that can fail or one that is as-

sumed always to complete. This models the fact that in real world specifications, some

exceptions are handled at a lower compared to business process specifications (e.g. most

technical failures). In our experiments we assumed a 50% chance of handling excep-

tions at the business level. An exception handling policy is chosen for all subflows and

all basic activities whose failure has to be handled at the business process level. The

policy is chosen randomly between: restart, reallocate (for manual basic activities) and

fail. Once all this is generated we have a specification of the workflow structure.

The second phase of the generation adds the data conditions to the generated

workflow structure. The conditions have to be generated for XOR-Splits branches, and

for basic activities that modify data attributes. The difference between these conditions

is that the conditions in basic activities have to mention the output attribute of activity.

In order to generate feedback-free systems, both kinds of conditions have to be hirarchy

safe (Definitions 5.3.2 and 5.3.3). We assumed a single modified data attribute for each

basic activity. The database schema is randomly generated in an uniform way, gener-

ating either binary tables with unary keys or tables with no keys. In our experiments

we generated different databases with 6 tables and maximum arity of 5. The logical

conditions are generated from a uniform distribution of logical connectors (i.e. ∧, ∨, ¬,

→) and a uniform distribution of atoms of the following kinds:

• equality atoms: att1 = att2 or att = constant, with att, att1 and att2, either data or

status attributes;

• database atoms: table(ā, with ā a vector of data attributes and constant;

• arithmetic atoms: c̄T · ā = t, with c̄ a vector of coefficients, ā a vector of data

attributes and t a real number.

In our experiments we limited the attributes in arithmetic operations to 4.

124

Example 7.1.1 In Figure 7.1 we show an example of an AWE generated by our algo-

rithm. The boxes represent basic activities. When they contain a condition it means that

they perform a data operation.

The dashed edges represent exception handling transitions. Note how the basic

activities with an exception handling policy of "fail", are all connected to the first activity

of their subflow with a dashed edge labeled "restartParent". The condition on the XOR-

Split is reported on the ourward edges of the "XOR-Split" node. Note, also, the nesting

of composite activities like AND-Splits and XOR-Splits.

7.1.1 Complexity

In order to characterize the complexity of the business process we generate, we

made use of two metrics. The first [McC76] is the standard Cyclomatic Complexity,

also known as McCabe index. It measures the complexity of the flow of a program and

it is directly related to complexity of testing a paticular piece of software. Intuitively,

it is related to the number of execution paths that can arise in a certain procedure. The

reason for choosing this metric comes from the fact that it is the standard in software en-

gineering and there are widely accepted standard to what constitutes good programming

practices for testability and understandability.

A problem with cyclomatic complexity is that is was developed for single-

threaded software. Workflows, on the other hand, support parallelism, which is com-

pletely unaccounted for in the cyclomatic complexity. In order to solve this problem we

measure the complexity of the business also with the Control Flow Complexity (CFC)

introduced by Cardoso [Car05] specifically for business processes. This complexity is

an extension of the cyclomatic complexity to workflows, and is widely accepted as a

meaningful and validated metric for business processes [GL06].

While computing these metrics on standard workflows is straightforward, we

have to account for the fact that our specifications included data operations. In order to

include data operations we considered them as a a special case of splits. Borrowing from

the possible paths interpretation of the cyclomatic complexity, we consider a declarative

data operation with multiple disjuncts analogous to a if statement. This accounts for the

fact that a tester should check individually the execution paths that result from each of

125

the disjuncts (and possibly their combinations).

In order to be conservative we computed the cyclomatic complexity of our spec-

ifications completely ignoring the parallelism, i.e. we assume all activities in AND-split

to be executed sequentially. Then, we consider each XOR-Split and each basic activity

whose failure has to be handled by the business process as if-statements. Data opera-

tions are considered as a case statement with a case for every combination of disjuncts.

This is analogous to the accounting of OR-Splits in the CFC metric.

The CFC complexity is computed ina similar way except that each AND-Split

increase the complexity by one. Also, every XOR-Split and basic activity with exception

handling count as a case statement. Lastly, data operations are considered as OR-Splits,

which is the same way as we account for them in the cyclomatic complexity.

7.1.2 Statistics

For our experiments we generated 50 business processes. In Figure 7.2 we re-

port the distribution of the business processes w.r.t. cyclomatic complexity. Note that

usually software quality guidelines force modules to have cyclomatic complexity of less

than 10 [McC76], and consider any module with cyclomatic complexity above 50 to be

‘untestable’.

In Figure 7.3 we report the distribution of the generated business processes w.r.t.

control flow complexity. We will analyze the performance of our verification algorithm

w.r.t. both these complexities.

7.2 Temporal properties generation

In order to generate temporal properties we followed the patterns and frequen-

cies identified in [DAC98]. The work in [DAC98] surveys over 500 real-life specifica-

tions of temporal properties to be formally verified on finite state systems (theoretically

equivalent to our contracts) and extracts recurrently appearing patterns that cover over

92% of the surveyed cases, along with their occurring frequencies. Ler ϕ and ψ be FO

conditions, the patterns we use are:

Absence A condition ϕ is never true (a.k.a. safety property);

126

Existence A condition ϕ has to be true at some time (a.k.a. reachability property);

Universality A condition ϕ is always true (a.k.a. safety property);

Precedence An instant where ϕ is true must always be preceded by an instant where ψ

is true;

Response An instant where ϕ is true must always be followed by an instant where ψ is

true.

The work [DAC98] describes many variations of the above behaviors. In our experi-

ments we generated only the most frequent ones, described above. The conditions used

in the properties are generated in the same way as the one for the business processes.

Example 7.2.1 Some properties generated by our generator:

• G ((NOT(status_bi_man_per_164="completed"))→

F (NOT (status_bi_man_per_155="offered")));

• G ((-att_bi_aut_inf_132 + att_bi_aut_inf_131 + att_bi_man_per_126 = 1)→

F table0 (att_bi_man_per_136, att_bi_man_per_126));

The first is an instance of the response pattern for the business process in Figure 7.1.

The second is another response pattern with conditions using database and arithmetic

predicates.

7.3 Execution enviroment

We ran our experiments on a desktop PC with a AMD Phenom 2.2 Ghz quad-

core CPU and 4Gb of RAM. We used Oracle JDK 1.6.0_21 on a Ubuntu 10.10 64bits

installation.

7.4 Experiments

We measured the running times of three verification algorithms on a series of

business process specifications and properties generated as specified in Sections 7.1 and

7.2. The algorithms we consider are the ones based on the theory of Chapter 4:

127

nodep for artifact systems with no keys and no arithmetic,

singlekey for feedback-free artifact systems with unary keys and no arithmetic, and

mixed for feedback-free artifact systems with unary keys and arithmetic.

Clearly, the results of the algorithms nodep and singlekey on inputs using keys and

arithmetic include false negatives. However, they provide a good way to gauge the

impact of the extra expressiveness on the performance of the verifier.

7.4.1 Scaling w.r.t. business process complexity

We now show the running times of the various verification algorithms w.r.t. the

complexity of the business process. We ran the theree different algorithms on 20 tem-

poral properties of 50 randomly generated feedback-free AWEs. In Figure 7.4 we show

how the average running times of the various algorithms scale w.r.t. the Control Flow

Complexity. Note how the average running time go from the seconds range for rela-

tively simple specifications (up to CFC 60), and they reach the range of minutes for

more complex ones (up to CFC 90).

In Figure 7.5 we show how the average running times of the various algorithms

scale w.r.t. the Cyclomatic Complexity. Note how the Cyclomatic Complexity does

not accurately reflects the complexity of the business process. Indeed, remember that

Cyclomatic Complexity does not take paralellism into account. Moreover, we note that

one of the three business processes with CC between 70-79 had nearly all conditions

referring to arithmetic constrants. This explain th spike in the average running time for

the mixed algorithm.

7.4.2 Discussion

From the results just presented, we argue that our approach is feasible for a

useful range of business process specifications. Remember that cyclomatic complexity

greater than 50 is considered ‘untestable’ [McC76], and our algorithm handles those

complexities in the minutes range. Also, following software engineering practices, we

contend than any specification significantly greater than 50 should be decomposed into

128

modules. This allows additional optimizations of the verifier (in the spirit of [FQ03]),

which can take advantage of the additional independence between different modules.

Also, comparing the running times of the different algorithms we can conclude

that correctly verifying specifications with unary keys and arithmetic does not introduce

a significant performance penalty. This follows from two reasons. First, the worst case

upper bound does not hit in the business process specifications used in our experiments.

Second, the added complexity of handling keys or arithmetic is offset by the additional

pruning happening on the state space.

We contend that the fact that the specifications we generated do not exhibit the

worst case behavior is compatible with the intuition that business processes are not used

to perform computations on data attributes, which causes the worst case upper bound;

but use data attributes in order to control the flow of activities to be performed.

In order to compare our technique with previous techniques for automatic data-

aware verification, we translated a web-site specification used in the experiments for the

WAVE verifier [DMS+05]. The web-site modeled a travel agency website (e.g. Ex-

pedia, Travelocity) and included 20 pages and a database with more than 10 tables of

up to 10 in arity. The web-site did not include arithmetic or key constraints. Since we

did not have access to the actual experiments run in [DMS+05], we verified properties

that implemented the same patterns as the one described in [DMS+05]. The running

time spanned a range of hundreds of hundreds of msec to 8 seconds for the mixed al-

gorithm. These are nearly the same running times as reported by [DMS+05], which

reports hundreds of msec to 4 seconds, although on a different machine. We argue then

that our technique, despite supporting more expressive specifications, does not perform

significantly worse than WAVE, that in [DMS+05] compared favorably with traditional

non-data-aware techniques like SPIN.

8 Conclusion

In this thesis we studied the feasibility of automatic verification of temporal

properties on business process specifications with data dependencies and arithmetic.

Compared to previous works in the verification field (see Section8.1), this thesis focuses

on the following aspects:

No loss of expressiveness Real-world business process specifications use both data-

aware constructs (with rich data dependencies) and arithmetic operations. We

want to be able to perform verification on all the possible behaviors arising from

such expressive power. This is in contrast to many previous approaches that ab-

stracts data and arithmetic; and to the ones might maitain the expressiveness but

require an expert user to provide additional information to correctly handle data.

Soundness and completeness We want to maintain completeness in our verification

technique. This means that we want to avoid false negatives as many application

scenarios (such as business rules or policy compliance) can greatly benefit from

sound and complete verification.

Automatic verification The technique does not have to rely on an external expert user

to help during verification. We want our technique to be amenable to integra-

tion in higher-level tools (e.g. business process development tools, monitoring,

discovery), this implies that users might be completely unaware of a verification

problem being solved under the hood.

Verification has been an important research topic for decades. Verifying gen-

eral purpose software, however, poses challenges that precludes most of the goals men-

tioned above. Specifically, general purpose software makes extensive use of data, arith-

metic and general recursive control structures. This is required by the generality of

132

133

the program behaviors required by implementations in general purpose programming

languages.

We contend in this thesis that business processes provide the perfect opportunity

to aim for the above mention goals. Work on patterns found in real-world business pro-

cesses [VDATHKB03, AM00] support the thesis that the recursive structures of business

process workflows is different, and more limited, than the one of general programs. We

argue that the work in this thesis develops strong foundations for automatic verification

of highly expressive business process specifications that is both sound and complete.

Business process model

We propose a syntactic restriction on the recursive structure of business pro-

cess specifications and termporal properties, called feedback-freedom, that guarantees

decidability of the verification problem (Chapters 2 and ??). The intuititon behind

feedback-freedom is reconducible to ideas expressed in studies of real-world business

process specifications [AM00]. Also, analogously to cyclomatic complexity [McC76],

feedback-freedom might be useful as a theoretically-based design guideline for business

processes.

One important feature is missing from our development: support for multiple

artifact instances. A first observation, is that any bounded number of instances is directly

supported by our model. This case is more useful in business processes as it is for

general purpose programs as reported in [VDATHKB03]. Secondly, we want to note that

many solutions have been developed for the same problem in standard model checking

[FQ03], that we think could be applied to our case. This is a very intersting area for

future work.

Complexity and implementation

Even considering the fact tha traditional model checking is PSPACE-complete,

the complexity upper bounds identified for our techniques are very high (EXPSPACE

for unary keys, and hyperexponential w.r.t. the size of the maximum cluster of attributes

involved in arithmetic, Chapter 4). We indentify common classes of specifications for

which, given a fixed-arity database, verification of unary keys is PSPACE. Moreover, we

134

contend that the hyperexponentiality does not manifest in real-world business process

specifications as it is the result of a specification using the recursive control to perform

arithmetic computations in the artifact attributes. This is compatible with the common

understanding of a business process specifications as the control of a workflow: the

business process describes and/or orchestrates the work performed by the organization.

The set of experiments that we ran on our verifier prototype (Chapters 6 and

7) support our thesis that these techniques performs adequately (i.e. running times in

the range of seconds to minutes) for a wide variety of complexities of business process

specifications. The complexity class of the specification studied in our experiments is

large enough to contain real-world business processes, i.e. cyclomatic complexity 80+

and control flow complexity 90+ (as per design guidelines [McC76, Car05]). Design

guidelines support our thesis that specification larger than that should be modularized,

enabling the exploitation of additional verification techniques such as compositional

model checking [BCC98]. Specific techniques could take advantage of higher level

module information not present in our specification language. For instance, modules

could declare data attributes required in read-mode and write-mode, decoupling

different portions of the specification, which results in the pruning of execution paths to

be checked by the verifier.

Concluding, we believe that the work in this thesis proves the feasibility of au-

tomatic verification of temporal properties on business process specifications with data

dependencies and arithmetic. The rest of this chapter summarizes some of the related

work.

8.1 Related Work

Data-aware business process models The specific notion of artifact was first

introduced in [NC03] and was further studied, from both practical and theoretical per-

spectives, in [BCK+07, B+05, GBS07, GS07, BGH+07, LBW07, KLW08, KRG07,

ea10]. Some key roots of the artifact model are present in “adaptive objects”[KNH+03],

“adaptive business objects” [NK05], “business entities”, “document-driven” workflow

135

[WK05] and “document” engineering [GM05]. The Vortex framework [HLS+99,

DHK+99, HLK+00] also allows the specification of database manipulations and pro-

vides declarative specifications for when services are applicable to a given artifact. The

artifact model considered here is closely related to that of semantic web services in gen-

eral. In particular, the OWL-S proposal [MSZ01, M+03] describes the semantics of

services with input, output, pre- and post-conditions.

Static analysis of data-aware business processes Work on formal analy-

sis of artifact-based business processes in restricted contexts has been reported in

[GBS07, GS07, BGH+07]. Properties investigated include reachability [GBS07, GS07],

general temporal constraints [GS07], and the existence of complete execution or dead

end [BGH+07]. Citations [GBS07, GS07] are focused on an essentially procedural

version of artifact-centric business processes, and [BGH+07] is the first to study a

declarative version. For the variants considered in each paper, verification is generally

undecidable; decidability results were obtained only under rather severe restrictions,

e.g., restricting all pre-conditions to be "true" [GBS07], restricting to bounded domains

[GS07, BGH+07], or restricting the pre- and post-conditions to refer only to artifacts

(and not their variable values) [GS07]. None of the above papers permit an underlying

database, integrity constraints, or arithmetic.

[CGHS09] adopts an artifact model variation with arithmetic operations but no

database (and therefore no integrity constraints). It proposes a criterion for comparing

the expressiveness of specifications using the notion of dominance, based on the in-

put/output pairs of business processes. Decidability is shown only by restricting runs to

bounded length. [ZSYQ09] addresses the problem of the existence of a run that satis-

fies a temporal property, for a restricted case with no database, no arithmetic, and only

propositional LTL properties. [BHCDG+11] considers another variety of the artifact

model, with database but no arithmetic and no data dependencies, and limited modeling

of the input from the environment. The work focuses on static verification of properties

in a very powerful language (first order µ-calculus) which subsumes the temporal logic

we consider (first order LTL), in particular allowing branching time. This expressiv-

ity comes at the cost of restricting verification decidability to the case when the initial

database contents are given. In contrast, we verify correctness properties for all possible

136

initializations of the database.

Static analysis for semantic web services is considered in [NM02], but in a con-

text restricted to finite domains.

More recently, [ASV09] has studied automatic verification in the context of busi-

ness processes based on Active XML documents.

The work in this thesis is most closely related to the one in [DHPV09], which

identifies the class of guarded artifact systems and LTL-FO properties, for which ver-

ification is decidable. The two settings have in common the underlying database and

the infinite data domain with a dense linear order, as well as the syntax for pre-, post-

conditions, and properties. However, [DHPV09] allows artifacts to contain relations

(called “state relations”) in addition to the record of variables, but considers no depen-

dencies and no arithmetic operations. Our previous results do not apply in the new

context, as Theorem 2.2.4 shows undecidability even when adding to a guarded artifact

system a single functional dependency, or alternately, when the only allowed arithmetic

operation consists in incrementing counters. The novel proof technique based on de-

scribing configuratons using inherited constraints is fundamentally different from the

one employed for guardedness. It is precisely the use of inherited constraints that en-

ables the support of dependencies (by chasing the inherited constraints with them) as

well as any decidable interpretation of C (by splitting the inherited constraints over the

two schemas C and DB and solving the C -satisfiability sub-problem in isolation).

The works [DSV07, Spi03, AVFY00] are ancestors of [DHPV09] from the con-

text of verification of electronic commerce applications. Their models could conceptu-

ally (if not naturally) be encoded as artifact systems, but they correspond only to partic-

ular cases of the model in [DHPV09]. They all disallow the linear order on the domain.

Also, limit artifact values to essentially come from the active domain of the database,

thus ruling out external inputs, partially-specified services, and arithmetic.

Infinite-state systems We expect our results to be of interest to the verification

community at large, since artifact systems are a particular case of infinite-state sys-

tems. Research on automatic verification of infinite-state systems has recently focused

on extending classical model checking techniques (e.g., see [BCMS01] for a survey).

However, in much of this work the emphasis is on studying recursive control rather than

137

data, which is either ignored or finitely abstracted. More recent work has been focusing

specifically on data as a source of infinity. This includes augmenting recursive proce-

dures with integer parameters [BHM03], rewriting systems with data [BJS07, BHJS07],

Petri nets with data associated to tokens [LNO+07], automata and logics over infinite al-

phabets [BPT03, Bou02, NSV04, DL06, JL07, BMS+06, BHJS07], and temporal logics

manipulating data [DL06, DLS08]. However, the restricted use of data and the particular

properties verified have limited applicability to the business artifacts setting.

Acknowledgement

Alin Deutsch and Victor Vianu co-authored this chapter.

Bibliography

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison Wesley, 1995.

[AM00] Alessandra Agostini and Giorgio De Michelis. Improving flexibility
of workflow management systems. In Business Process Management,
pages 218–234, 2000.

[ant] Antlr. http://www.antlr.org/.

[ASV09] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Static analysis of
active XML systems. ACM Trans. Database Syst., 34(4), 2009.

[AVFY00] S. Abiteboul, V. Vianu, B.S. Fordham, and Y. Yesha. Relational trans-
ducers for electronic commerce. JCSS, 61(2):236–269, 2000. Ex-
tended abstract in PODS 98.

[B+05] K. Bhattacharya et al. A model-driven approach to industrializing dis-
covery processes in pharmaceutical research. IBM Systems Journal,
44(1):145–162, 2005.

[BCC98] Sergey Berezin, SÃl’rgio Campos, and Edmund Clarke. Compositional
reasoning in model checking. In Willem-Paul de Roever, Hans Lang-
maack, and Amir Pnueli, editors, Compositionality: The Significant
Difference, volume 1536 of Lecture Notes in Computer Science, pages
81–102. Springer Berlin / Heidelberg, 1998.

[BCK+07] K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam, and F. Y. Wu.
Artifact-centered operational modeling: Lessons from customer en-
gagements. IBM Systems Journal, 46(4):703–721, 2007.

[BCMS01] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification of infinite
structures. In Handbook of Process Algebra, pages 545–623. Elsevier
Science, 2001.

[BGH+07] K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and J. Su. Towards
formal analysis of artifact-centric business process models. In Proc.

138

139

Int. Conf. on Business Process Management (BPM), pages 288–304,
2007.

[BHCDG+11] Babak Bagheri-Hariri, Diego Calvanese, Giuseppe De Giacomo, Ric-
cardo De Masellis, and Paolo Felli. Foundations of relational artifacts
verification. In Proc. of 9th Int. Conference on Business Process Man-
agement (BPM 2011), 2011.

[BHJS07] A. Bouajjani, P. Habermehl, Y. Jurski, and M. Sighireanu. Rewrit-
ing systems with data. In FCT’07, volume 4639 of Lecture Notes in
Computer Science, pages 1–22. Springer, 2007.

[BHM03] A. Bouajjani, P. Habermehl, and R. Mayr. Automatic verification of re-
cursive procedures with one integer parameter. Theoretical Computer
Science, 295:85–106, 2003.

[Bir96] J-C Birget. Two-way automata and length-preserving homomor-
phisms. Theory of Computing Systems, 29(3):191–226, 1996.

[BJS07] A. Bouajjani, Y. Jurski, and M. Sighireanu. A generic framework
for reasoning about dynamic networks of infinite-state processes. In
TACAS’07, volume 4424 of Lecture Notes in Computer Science, pages
690–705. Springer, 2007.

[BMS+06] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc
Segoufin, and Claire David. Two-variable logic on words with data.
In LICS, pages 7–16, 2006.

[Bou02] P. Bouyer. A logical characterization of data languages. Information
Processing Letters, 84(2):75–85, 2002.

[BPT03] P. Bouyer, A. Petit, and D. Thérien. An algebraic approach to
data languages and timed languages. Information and Computation,
182(2):137–162, 2003.

[Car05] Jorge Cardoso. Evaluating the process control-flow complexity mea-
sure. In Proceedings of the IEEE International Conference on Web
Services, ICWS ’05, pages 803–804, Washington, DC, USA, 2005.
IEEE Computer Society.

[CGHS09] Diego Calvanese, Giuseppe De Giacomo, Richard Hull, and Jianwen
Su. Artifact-centric workflow dominance. In ICSOC/ServiceWave,
pages 130–143, 2009.

[DAC98] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Prop-
erty specification patterns for finite-state verification. In Workshop on
Formal Methods in Software Practice, 1998.

140

[DBL01] Proceedings of GROUP 2001, ACM 2001 International Conference on
Supporting Group Work, September 30 - October 3, 2001, Boulder,
Colorado, USA. ACM, 2001.

[DDV11] E. Damaggio, A. Deutsch, and V. Vianu. Artifact systems with data
dependencies and arithmetic. In International Conference on Database
Theory (ICDT), 2011.

[DHK+99] G. Dong, R. Hull, B. Kumar, J Su, and G Zhou. A framework for
optimizing distributed workflow executions. In Proc. Intl. Workshop
on Database Programming Languages (DBPL), pages 152–167, 1999.

[DHPV09] Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor Vianu. Auto-
matic verification of data-centric business processes. In ICDT, pages
252–267, 2009.

[dig] Apache digester. http://commons.apache.org/digester/.

[DL06] Stéphane Demri and Ranko Lazić. LTL with the Freeze Quantifier and
Register Automata. In LICS, pages 17–26, 2006.

[DLS08] Stéphane Demri, Ranko Lazić, and Arnaud Sangnier. Model checking
freeze LTL over one-counter automata. In Proceedings of the 11th In-
ternational Conference on Foundations of Software Science and Com-
putation Structures (FoSSaCS’08), pages 490–504, 2008.

[DMS+05] Alin Deutsch, Monica Marcus, Liying Sui, Victor Vianu, and Dayou
Zhou. A verifier for interactive, data-driven web applications. In Pro-
ceedings of the 2005 ACM SIGMOD international conference on Man-
agement of data, SIGMOD ’05, pages 539–550, New York, NY, USA,
2005. ACM.

[DNR08] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited.
In PODS, pages 149–158, 2008.

[DSV07] Alin Deutsch, Liying Sui, and Victor Vianu. Specification and verifi-
cation of data-driven web applications. JCSS, 73(3):442–474, 2007.

[ea10] R. Hull et al. Introducing the guard-stage-milestone approach for spec-
ifying business entity lifecycles. In Proc. of 7th Intl. Workshop on Web
Services and Formal Methods (WS-FM), 2010.

[Fag82] Ronald Fagin. Horn clauses and database dependencies. J. ACM,
29(4):952–985, 1982.

[FKMP03] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa.
Data exchange: Semantics and query answering. In ICDT, pages 207–
224, 2003.

141

[FQ03] Cormac Flanagan and Shaz Qadeer. Thread-modular model check-
ing. In Thomas Ball and Sriram Rajamani, editors, Model Checking
Software, volume 2648 of Lecture Notes in Computer Science, pages
624–624. Springer Berlin / Heidelberg, 2003.

[GBS07] C. E. Gerede, K. Bhattacharya, and J. Su. Static analysis of business
artifact-centric operational models. In IEEE International Conference
on Service-Oriented Computing and Applications, 2007.

[GL06] Volker Gruhn and Ralf Laue. Complexity metrics for business pro-
cess models. In 9th international conference on business information
systems (BIS 2006), volume 85 of Lecture Notes in Informatics, pages
1–12, 2006.

[GM05] R.J. Glushko and T. McGrath. Document Engineering: Analyzing
and Designing Documents for Business Informatics and Web Services.
MIT Press, Cmabridge, MA, 2005.

[GS07] C. E. Gerede and J. Su. Specification and verification of artifact behav-
iors in business process models. In Proceedings of 5th International
Conference on Service-Oriented Computing (ICSOC), Vienna, Aus-
tria, September 2007.

[HLK+00] R. Hull, F. Llirbat, B. Kumar, G. Zhou, G. Dong, and J. Su. Optimiza-
tion techniques for data-intensive decision flows. In Proc. IEEE Intl.
Conf. on Data Engineering (ICDE), pages 281–292, 2000.

[HLS+99] R. Hull, F. Llirbat, E. Simon, J. Su, G. Dong, B. Kumar, and G. Zhou.
Declarative workflows that support easy modification and dynamic
browsing. In Proc. Int. Joint Conf. on Work Activities Coordination
and Collaboration, 1999.

[JL07] Marcin Jurdzinski and Ranko Lazić. Alternation-free modal mu-
calculus for data trees. In LICS, pages 131–140, 2007.

[jpf] Java pathfinder. http://javapathfinder.sourceforge.net/.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear program-
ming. In STOC, pages 302–311, 1984.

[KLW08] S. Kumaran, R. Liu, and F. Y. Wu. On the duality of information-
centric and activity-centric models of business processes. In Proc. Intl.
Conf. on Advanced Information Systems Engineering (CAISE), 2008.

[KNH+03] S. Kumaran, P. Nandi, T. Heath, K. Bhaskaran, and R. Das. ADoc-
oriented programming. In Symp. on Applications and the Internet
(SAINT), pages 334–343, 2003.

142

[KRG07] J. Küster, K. Ryndina, and H. Gall. Generation of BPM for object life
cycle compliance. In Proceedings of 5th International Conference on
Business Process Management (BPM), 2007.

[LBW07] R. Liu, K. Bhattacharya, and F. Y. Wu. Modeling business contex-
ture and behavior using business artifacts. In CAiSE, volume 4495 of
LNCS, 2007.

[Lib04] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.

[LLS84] Richard E. Ladner, Richard J. Lipton, and Larry J. Stockmeyer. Alter-
nating pushdown and stack automata. SIAM J. Comput., 13(1):135–
155, 1984.

[LNO+07] R. Lazić, Th. Newcomb, J. Ouaknine, A. Roscoe, and J. Worrell. Nets
with tokens which carry data. In ICATPN’07, volume 4546 of Lecture
Notes in Computer Science, pages 301–320. Springer, 2007.

[lps] lp_solve. http://sourceforge.net/projects/lpsolve/.

[LS11] L.Segoufin and S.Torunczyk. Automata based verification over lin-
early ordered data domains. In Int’l. Symp. on Theoretical Aspects of
Computer Science (STACS), 2011.

[M+03] D. Martin et al. OWL-S: Semantic markup for web services, W3C
Member Submission, November 2003.

[McC76] T.J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, 2:308–320, 1976.

[Min67] Marvin L. Minsky. Computation: finite and infinite machines.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1967.

[MNG08] Wim Martens, Frank Neven, and Marc Gyssens. Typechecking top-
down XML transformations: Fixed input or output schemas. Inf. Com-
put., 206(7):806–827, 2008. Preliminary version in ICDT 2003.

[MSWL10] Michael Meier, Michael Schmidt, Fang Wei, and Georg Lausen. Se-
mantic query optimization in the presence of types. In PODS, pages
111–122, 2010.

[MSZ01] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services. IEEE
Intelligent Systems, 16(2):46–53, 2001.

[NC03] A. Nigam and N. S. Caswell. Business artifacts: An approach to oper-
ational specification. IBM Systems Journal, 42(3):428–445, 2003.

143

[NK05] P. Nandi and S. Kumaran. Adaptive business objects – a new compo-
nent model for business integration. In Proc. Intl. Conf. on Enterprise
Information Systems, pages 179–188, 2005.

[NM02] S. Narayanan and S. McIlraith. Simulation, verification and auto-
mated composition of web services. In Intl. World Wide Web Conf.
(WWW2002), 2002.

[NSV04] F. Neven, T. Schwentick, and V. Vianu. Finite State Machines for
Strings Over Infinite Alphabets. ACM Transactions on Computational
Logic, 5(3):403–435, 2004.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57,
1977.

[RHE05] Nick Russell, Arthur H. M. Ter Hofstede, and David Edmond. Work-
flow resource patterns: Identification, representation and tool support.
In Proceedings of the 17th Conference on Advanced Information Sys-
tems Engineering (CAiSEâĂŹ05), volume 3520 of Lecture Notes in
Computer Science, pages 216–232. Springer, 2005.

[RtHEvdA05] Nick Russell, Arthur H. M. ter Hofstede, David Edmond, and Wil
M. P. van der Aalst. Workflow data patterns: Identification, repre-
sentation and tool support. In IN âĂŸPROCEEDINGS OF THE 25TH
INTERNATIONAL CONFERENCE ON CONCEPTUAL MODELING
(ERâĂŹ2005. Springer, 2005.

[RvdAtH] Nick Russell, Wil M. P. van der Aalst, and Arthur H. M. ter Hofstede.
Workflow exception patterns. In Proceedings of 18th CAiSE, pages
288–302.

[Spi03] M. Spielmann. Verification of relational transducers for electronic
commerce. JCSS., 66(1):40–65, 2003. Extended abstract in PODS
2000.

[TLR07] L. H. Thom, C. Lochpe, and M. U. Reichert. Workflow patterns for
business process modeling. In Proceedings of Workshops and Doc-
toral Consortium of the 19th International Conference on Advanced
Information Systems Engineering (CAiSE 2007), Trondheim, Norway,
volume I, pages 349–358, Norway, June 2007. Tapir Academic Press.

[VDATHKB03] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and
A. P. Barros. Workflow patterns. Distrib. Parallel Databases, 14:5–51,
July 2003.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to auto-
matic program verification. In LICS, 1986.

144

[WK05] J. Wang and A. Kumar. A framework for document-driven workflow
systems. In Business Process Management, pages 285–301, 2005.

[ZSYQ09] Xiangpeng Zhao, Jianwen Su, Hongli Yang, and Zongyan Qiu. En-
forcing constraints on life cycles of business artifacts. In TASE, pages
111–118, 2009.

