Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Optimization of the signal-to-noise ratio of frequency-domain instrumentation for near-infrared spectro-imaging of the human brain.

Abstract

Frequency-domain near-infrared spectro-imaging offers significant advantages over the continuous-wave method in human brain applications. However, the drawback of existing instruments is a low signal-to-noise ratio for measured phase and modulation depth changes caused by cerebral activation. In this paper we show that in the case of the geometry specific for the activated area in the human brain, the SNR can be significantly improved by increasing the modulation frequency. We present the results of two studies: one performed experimentally using a subnanosecond pulsed light source and a spherical absorbing inhomogeneity immersed in a highly scattering solution, and the other performed numerically using Monte Carlo simulations of light transport in an MRI based digital phantom of the adult human head. We show that changes caused by the absorbing inhomogeneity in both phase and modulation depth increase with frequency and reach maximum values at frequencies between 400 and 1400 MHz, depending on the particular source-detector distance. We also show that for the human head geometry an increase of the modulation frequency from 100 to 500 MHz can increase the phase SNR 2-3 times, and the modulation depth SNR up to 10 times.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View