Skip to main content
Ultra-rare variants drive substantial cis-heritability of human gene expression
Abstract
ABSTRACT
The vast majority of human mutations have minor allele frequencies (MAF) under 1%, with the plurality observed only once (i.e., “singletons”). While Mendelian diseases are predominantly caused by rare alleles, their cumulative contribution to complex phenotypes remains largely unknown. We develop and rigorously validate an approach to jointly estimate the contribution of all alleles, including singletons, to phenotypic variation. We apply our approach to transcriptional regulation, an intermediate between genetic variation and complex disease. Using whole genome DNA and lymphoblastoid cell line RNA sequencing data from 360 European individuals, we conservatively estimate that singletons contribute ~25% of cis -heritability across genes (dwarfing the contributions of other frequencies). Strikingly, the majority (~76%) of singleton heritability derives from ultra-rare variants absent from thousands of additional samples. We develop a novel inference procedure to demonstrate that our results are consistent with rampant purifying selection shaping the regulatory architecture of most human genes.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.