Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Polynomial-Time Verification of PCTL Properties of MDPs with Convex Uncertainties

Published Web Location

http://people.eecs.berkeley.edu/~sseshia/pubdir/prob-cav13.pdf
No data is associated with this publication.
Abstract

We address the problem of verifying Probabilistic Computation Tree Logic (PCTL) properties of Markov Decision Processes (MDPs) whose state transition probabilities are only known to lie within uncertainty sets. We first introduce the model of Convex-MDPs (CMDPs), i.e., MDPs with convex uncertainty sets. CMDPs generalize Interval-MDPs (IMDPs) by allowing also more expressive (convex) descriptions of uncertainty. Using results on strong duality for convex programs, we then present a PCTL verification algorithm for CMDPs, and prove that it runs in time polynomial in the size of a CMDP for a rich subclass of convex uncertainty models. This result allows us to lower the previously known algorithmic complexity upper bound for IMDPs from co-NP to PTIME. We demonstrate the practical effectiveness of the proposed approach by verifying a consensus protocol and a dynamic configuration protocol for IPv4 addresses. © 2013 Springer-Verlag.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item