Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

VEGF Induces More Severe Cerebrovascular Dysplasia in Eng+/− than in Alk1+/− Mice

Abstract

Brain arteriovenous malformations (BAVMs) are an important cause of intracranial hemorrhage (ICH) in young adults. A small percent of BAVMs is due to hereditary hemorrhagic telangiectasia 1 and 2 (HHT1 and 2), which are caused by mutations in two genes involved in TGF-β signaling: endoglin (ENG) and activin-like kinase 1 (ALK1). The BAVM phenotype is an incomplete penetrant in HHT patients, and the mechanism is unknown. We tested the hypothesis that a "response-to-injury" triggers abnormal vascular (dysplasia) development, using Eng and Alk1 haploinsufficient mice. Adeno-associated virus (AAV) expressing vascular endothelial growth factor (VEGF) was used to mimic the injury conditions. VEGF overexpression caused a similar degree of angiogenesis in the brain of all groups, except that the cortex of Alk1(+/-) mice had a 33% higher capillary density than other groups. There were different levels of cerebrovascular dysplasia in haploinsufficient mice (Eng(+/)>Alk1(+/-)), which simulates the relative penetrance of BAVM in HHT patients (HHT1>HHT2). Few dysplastic capillaries were observed in AAV-LacZ-injected mice. Our data indicate that both angiogenic stimulation and genetic alteration are necessary for the development of dysplasia, suggesting that anti-angiogenic therapies might be adapted to slow the progression of the disease and decrease the risk of spontaneous ICH.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View