Skip to main content
eScholarship
Open Access Publications from the University of California

Odd-Parity Superconductivity near an Inversion Breaking Quantum Critical Point in One Dimension

Abstract

We study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttinger parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View