Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Molecular beam scattering of neon from flat jets of cold salty water

Abstract

Molecular beam scattering experiments are carried out to study collisions between Ne atoms (E i = 24.3 kJ mol-1) and the surface of a cold salty water (8 m LiBr(aq), 230 K) flat jet. Translational energy distributions are collected as a function of scattering angle using a rotatable mass spectrometer. Impulsive scattering and thermal desorption contribute to the overall scattering distributions, but impulsive scattering dominates at all three incidence angles explored. Highly super-specular scattering is observed in the impulsive scattering channel that is attributed to anisotropic momentum transfer to the liquid surface. The thermal desorption channel exhibits a cos θ angular distribution. Compared to Ne scattering from dodecane, fractional energy loss in the impulsive scattering channel is much larger across a wide range of deflection angles. A soft-sphere model is applied to investigate the kinematics of energy transfer between the scatterer and liquid surface. Fitting to this model yields an effective surface mass of 250-60 +100 amu and internal excitation of 11.8 ± 1.6 kJ mol-1, both of which are considerably larger than for Ne/dodecane. It thus appears that energy transfer to cold salty water is more efficient than to a dodecane liquid surface, a result attributed to the extensive hydrogen-bonded network of liquid water and roughness of the liquid surface.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.