Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Interactive Data Exploration with Smart Drill-Down

Abstract

We present smart drill-down, an operator for interactively exploring a relational table to discover and summarize "interesting" groups of tuples. Each group of tuples is described by a rule. For instance, the rule (a, b, ⋆, 1000) tells us that there are a thousand tuples with value a in the first column and b in the second column (and any value in the third column). Smart drill-down presents an analyst with a list of rules that together describe interesting aspects of the table. The analyst can tailor the definition of interesting, and can interactively apply smart drill-down on an existing rule to explore that part of the table. We demonstrate that the underlying optimization problems are NP-Hard, and describe an algorithm for finding the approximately optimal list of rules to display when the user uses a smart drill-down, and a dynamic sampling scheme for efficiently interacting with large tables. Finally, we perform experiments on real datasets on our experimental prototype to demonstrate the usefulness of smart drill-down and study the performance of our algorithms.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View