Skip to main content
Open Access Publications from the University of California
Notice: eScholarship will undergo scheduled maintenance from Tuesday, January 21 to Wednesday, January 22. Some functionality may not be available during this time. Learn more at eScholarship Support.
Download PDF
- Main
Dynamical Role of Pivotal Brain Regions in Parkinson Symptomatology Uncovered with Deep Learning
Abstract
Background
The release of a broad, longitudinal anatomical dataset by the Parkinson's Progression Markers Initiative promoted a surge of machine-learning studies aimed at predicting disease onset and progression. However, the excessive number of features used in these models often conceals their relationship to the Parkinsonian symptomatology.Objectives
The aim of this study is two-fold: (i) to predict future motor and cognitive impairments up to four years from brain features acquired at baseline; and (ii) to interpret the role of pivotal brain regions responsible for different symptoms from a neurological viewpoint.Methods
We test several deep-learning neural network configurations, and report our best results obtained with an autoencoder deep-learning model, run on a 5-fold cross-validation set. Comparison with Existing Methods: Our approach improves upon results from standard regression and others. It also includes neuroimaging biomarkers as features.Results
The relative contributions of pivotal brain regions to each impairment change over time, suggesting a dynamical reordering of culprits as the disease progresses. Specifically, the Putamen is initially the most critical region accounting for the overall cognitive state, only being surpassed by the Substantia Nigra in later years. The Pallidum is the first region to influence motor scores, followed by the parahippocampal and ambient gyri, and the anterior orbital gyrus.Conclusions
While the causal link between regional brain atrophy and Parkinson symptomatology is poorly understood, our methods demonstrate that the contributions of pivotal regions to cognitive and motor impairments are more dynamical than generally appreciated.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%