Skip to main content
Download PDF
- Main
Simulation study comparing analytical methods for single-item longitudinal patient-reported outcomes data
Published Web Location
https://doi.org/10.1007/s11136-022-03267-zAbstract
Purpose
Efficient analytical methods are necessary to make reproducible inferences on single-item longitudinal ordinal patient-reported outcome (PRO) data. A thorough simulation study was performed to compare the performance of the semiparametric probabilistic index models (PIM) with a longitudinal analysis using parametric cumulative logit mixed models (CLMM).Methods
In the setting of a control and intervention arm, we compared the power of the PIM and CLMM to detect differences in PRO adverse event (AE) between these groups using several existing and novel summary scores of PROs. For each scenario, PRO data were simulated using copula multinomial models. Comparisons were also exemplified using clinical trial data.Results
On average, CLMM provided substantially greater power than the PIM to detect differences in PRO-AEs between the groups when the baseline-adjusted method was used, and a small advantage in power when using the baseline symptom as a covariate.Conclusion
Although the CLMM showed the best performance among analytical methods, it relies on assumptions difficult to verify and that might not be fulfilled in the real world, therefore our recommendation is the use of PIM models with baseline symptom as a covariate.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%