Skip to main content
Download PDF
- Main
Plant communities on infertile soils are less sensitive to climate change
Published Web Location
https://doi.org/10.1093/aob/mcu230Abstract
Background and aims
Much evidence suggests that plant communities on infertile soils are relatively insensitive to increased water deficit caused by increasing temperature and/or decreasing precipitation. However, a multi-decadal study of community change in the western USA does not support this conclusion. This paper tests explanations related to macroclimatic differences, overstorey effects on microclimate, variation in soil texture and plant functional traits.Methods
A re-analysis was undertaken of the changes in the multi-decadal study, which concerned forest understorey communities on infertile (serpentine) and fertile soils in an aridifying climate (southern Oregan) from 1949-1951 to 2007-2008. Macroclimatic variables, overstorey cover and soil texture were used as new covariates. As an alternative measure of climate-related change, the community mean value of specific leaf area was used, a functional trait measuring drought tolerance. We investigated whether these revised analyses supported the prediction of lesser sensitivity to climate change in understorey communities on infertile serpentine soils.Key results
Overstorey cover, but not macroclimate or soil texture, was a significant covariate of community change over time. It strongly buffered understorey temperatures, was correlated with less change and averaged >50 % lower on serpentine soils, thereby counteracting the lower climate sensitivity of understorey herbs on these soils. Community mean specific leaf area showed the predicted pattern of less change over time in serpentine than non-serpentine communities.Conclusions
Based on the current balance of evidence, plant communities on infertile serpentine soils are less sensitive to changes in the climatic water balance than communities on more fertile soils. However, this advantage may in some cases be lessened by their sparser overstorey cover.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%