- Main
Spin selective charge recombination in chiral donor–bridge–acceptor triads
Published Web Location
https://doi.org/10.1063/5.0150269Abstract
In this paper, we outline a physically motivated framework for describing spin-selective recombination processes in chiral systems, from which we derive spin-selective reaction operators for recombination reactions of donor-bridge-acceptor molecules, where the electron transfer is mediated by chirality and spin-orbit coupling. In general, the recombination process is selective only for spin-coherence between singlet and triplet states, and it is not, in general, selective for spin polarization. We find that spin polarization selectivity only arises in hopping-mediated electron transfer. We describe how this effective spin-polarization selectivity is a consequence of spin-polarization generated transiently in the intermediate state. The recombination process also augments the coherent spin dynamics of the charge separated state, which is found to have a significant effect on the recombination dynamics and to destroy any long-lived spin polarization. Although we only consider a simple donor-bridge-acceptor system, the framework we present here can be straightforwardly extended to describe spin-selective recombination processes in more complex systems.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-