Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Revealing the nature of electron correlation in transition metal complexes with symmetry breaking and chemical intuition

Published Web Location

https://doi.org/10.1063/5.0047386Creative Commons 'BY' version 4.0 license
Abstract

In this work, we provide a nuanced view of electron correlation in the context of transition metal complexes, reconciling computational characterization via spin and spatial symmetry breaking in single-reference methods with qualitative concepts from ligand-field and molecular orbital theories. These insights provide the tools to reliably diagnose the multi-reference character, and our analysis reveals that while strong (i.e., static) correlation can be found in linear molecules (e.g., diatomics) and weakly bound and antiferromagnetically coupled (monometal-noninnocent ligand or multi-metal) complexes, it is rarely found in the ground-states of mono-transition-metal complexes. This leads to a picture of static correlation that is no more complex for transition metals than it is, e.g., for organic biradicaloids. In contrast, the ability of organometallic species to form more complex interactions, involving both ligand-to-metal σ-donation and metal-to-ligand π-backdonation, places a larger burden on a theory's treatment of dynamic correlation. We hypothesize that chemical bonds in which inter-electron pair correlation is non-negligible cannot be adequately described by theories using MP2 correlation energies and indeed find large errors vs experiment for carbonyl-dissociation energies from double-hybrid density functionals. A theory's description of dynamic correlation (and to a less important extent, delocalization error), which affects relative spin-state energetics and thus spin symmetry breaking, is found to govern the efficacy of its use to diagnose static correlation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View