Skip to main content
eScholarship
Open Access Publications from the University of California

Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector

  • Author(s): Abusleme, A
  • Adam, T
  • Ahmad, S
  • Aiello, S
  • Akram, M
  • Ali, N
  • An, FP
  • An, GP
  • An, Q
  • Andronico, G
  • Anfimov, N
  • Antonelli, V
  • Antoshkina, T
  • Asavapibhop, B
  • de André, JPAM
  • Babic, A
  • Balantekin, AB
  • Baldini, W
  • Baldoncini, M
  • Band, HR
  • Barresi, A
  • Baussan, E
  • Bellato, M
  • Bernieri, E
  • Biare, D
  • Birkenfeld, T
  • Bishai, M
  • Blin, S
  • Blum, D
  • Blyth, S
  • Bordereau, C
  • Brigatti, A
  • Brugnera, R
  • Budano, A
  • Burgbacher, P
  • Buscemi, M
  • Bussino, S
  • Busto, J
  • Butorov, I
  • Cabrera, A
  • Cai, H
  • Cai, X
  • Cai, YK
  • Cai, ZY
  • Cammi, A
  • Campeny, A
  • Cao, CY
  • Cao, GF
  • Cao, J
  • Caruso, R
  • Cerna, C
  • Chang, JF
  • Chang, Y
  • Chen, HS
  • Chen, PA
  • Chen, PP
  • Chen, SM
  • Chen, SJ
  • Chen, XR
  • Chen, YW
  • Chen, YX
  • Chen, Y
  • Chen, Z
  • Cheng, J
  • Cheng, YP
  • Cheng, ZK
  • Chepurnov, A
  • Cherwinka, JJ
  • Chiarello, F
  • Chiesa, D
  • Chimenti, P
  • Chu, MC
  • Chukanov, A
  • Chuvashova, A
  • Clementi, C
  • Clerbaux, B
  • Di Lorenzo, SC
  • Corti, D
  • Costa, S
  • Dal Corso, F
  • Cummings, JP
  • Dalager, O
  • De La Taille, C
  • Deng, FS
  • Deng, JW
  • Deng, Z
  • Deng, ZY
  • Depnering, W
  • Diaz, M
  • Ding, XF
  • Ding, YY
  • Dirgantara, B
  • Dmitrievsky, S
  • Diwan, MV
  • Dohnal, T
  • Donchenko, G
  • Dong, JM
  • Dornic, D
  • Doroshkevich, E
  • Dove, J
  • et al.
Abstract

© 2020 Elsevier B.V. To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detector size difference between Daya Bay and JUNO, the Daya Bay data were used to tune the parameters of a newly developed optical model. Then, the model and tuned parameters were used in the JUNO simulation. This enabled to determine the optimal composition for the JUNO LS: purified solvent LAB with 2.5 g/L PPO, and 1 to 4 mg/L bis-MSB.

Main Content
Current View