- Main
Exploring the interaction between the protein kinase A catalytic subunit and caveolin‐1 scaffolding domain with shotgun scanning, oligomer complementation, NMR, and docking
Abstract
The techniques of phage-displayed homolog shotgun scanning, oligomer complementation, NMR secondary structure analysis, and computational docking provide a complementary suite of tools for dissecting protein-protein interactions. Focusing these tools on the interaction between the catalytic sub-unit of protein kinase A (PKAcat) and caveolin-1 scaffolding domain (CSD) reveals the first structural model for the interaction. Homolog shotgun scanning varied each CSD residue as either a wild-type or a homologous amino acid. Wild-type to homolog ratios from 116 different homologous CSD variants identified side-chain functional groups responsible for precise contacts with PKAcat. Structural analysis by NMR assigned an alpha-helical conformation to the central residues 84- 97 of CSD. The extensive mutagenesis data and NMR secondary structure information provided constraints for developing a model for the PKAcat-CSD interaction. Addition of synthetic CSD to phage-displayed CSD resulted in oligomer complementation, or enhanced binding to PKAcat. Together with previous experiments examining the interaction between CSD and endothelial nitric oxide synthase (eNOS), the results suggest a general oligomerization-dependent enhancement of binding between signal transducing enzymes and caveolin-1.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-