Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Second messengers mediating high-molecular-weight hyaluronan-induced antihyperalgesia in rats with chemotherapy-induced peripheral neuropathy.

Abstract

High-molecular-weight hyaluronan (HMWH) is an agonist at cluster of differentiation (CD)44, the cognate hyaluronan receptor, on nociceptors, where it acts to induce antihyperalgesia in preclinical models of inflammatory and neuropathic pain. In the present experiments, we studied the CD44 second messengers that mediate HMWH-induced attenuation of pain associated with oxaliplatin and paclitaxel chemotherapy-induced peripheral neuropathy (CIPN). While HMWH attenuated CIPN only in male rats, after ovariectomy or intrathecal administration of an oligodeoxynucleotide (ODN) antisense to G protein-coupled estrogen receptor (GPR30) mRNA, female rats were also sensitive to HMWH. Intrathecal administration of an ODN antisense to CD44 mRNA markedly attenuated HMWH-induced antihyperalgesia in male rats with CIPN induced by oxaliplatin or paclitaxel. Intradermal administration of inhibitors of CD44 second messengers, RhoA (member of the Rho family of GTPases), phospholipase C, and phosphatidylinositol (PI) 3-kinase gamma (PI3Kγ), attenuated HMWH-induced antihyperalgesia as does intrathecal administration of an ODN antisense to PI3Kγ. Our results demonstrated that HMWH induced antihyperalgesia in CIPN, mediated by its action at CD44 and downstream signaling by RhoA, phospholipase C, and PI3Kγ.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View