Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

From Soma to Synapse: Imaging Age-Related Rod Photoreceptor Changes in the Mouse with Visible Light OCT

Abstract

Purpose

Although the outer nuclear layer (ONL) and outer plexiform layer (OPL) each exhibit a complex internal organization, near-infrared OCT depicts both as monolithic bands. Here, using visible light OCT in the C57BL/6J mouse retina, sublaminar age-related changes in photoreceptor features were imaged and interpreted. These features were (1) oscillations in reflectivity, or striations, in the ONL and (2) a moderately reflective subband in the OPL.

Design

Cross-sectional study.

Participants

Pigmented mice (C57BL/6J, n = 14).

Methods

A 1.0-μm axial resolution visible light spectral/Fourier domain OCT system was used for in vivo retinal imaging. Light and electron microscopy were performed ex vivo. Linear mixed effects models or regression were employed for statistical analysis.

Main outcome measures

Comparison of OCT subbands with corresponding histological features, as well as quantification of subband thickness and reflectivity.

Results

Corresponding histological comparisons confirm that striations in the ONL arise from the rowlike arrangement of photoreceptor nuclei and reveal that the moderately reflective OPL subband arises from rod spherules. Compression of outer ONL striations with age suggests changes in soma organization. Thinning of the moderately reflective OPL subband with age supports a reduction of synapses in the OPL. Critically, the ONL somas are tightly correlated with the purported spherule layer but not with the rest of the OPL.

Conclusions

Visible light OCT imaging of the mouse OPL resolves postsynaptic and synaptic differences. Visible light OCT can study rod photoreceptor changes from the soma to the synapse in the living mouse retina.

Financial disclosures

Proprietary or commercial disclosure may be found after the references.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View