Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

The use of nanolipoprotein particles to enhance the immunostimulatory properties of innate immune agonists against lethal influenza challenge

Abstract

Recent studies have demonstrated that therapies targeting the innate immune system have the potential to provide transient, non-specific protection from a variety of infectious organisms; however, the potential of enhancing the efficacy of such treatments using nano-scale delivery platforms requires more in depth evaluation. As such, we employed a nanolipoprotein (NLP) platform to enhance the efficacy of innate immune agonists. Here, we demonstrate that the synthetic Toll-like receptor (TLR) agonists monophosphoryl lipid A (MPLA) and CpG oligodeoxynucleotides (CpG) can be readily incorporated into NLPs. Conjugation of MPLA and CpG to NLPs (MPLA:NLP and CpG:NLP, respectively) significantly enhanced their immunostimulatory profiles both in vitro and in vivo compared to administration of agonists alone, as evidenced by significant increases in cytokine production, cell surface expression of activation markers, and upregulation of immunoregulatory genes. Importantly, enhancement of cytokine production by agonist conjugation to NLPs was also observed in primary human dendritic cells. Furthermore, BALB/c mice pretreated with CpG:NLP constructs survived a lethal influenza challenge whereas pretreatment with CpG alone had no effect on survival.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View