Skip to main content
eScholarship
Open Access Publications from the University of California

Exercise Training Reverses Skeletal Muscle Atrophy in an Experimental Model of VCP Disease

Abstract

Background

The therapeutic effects of exercise resistance and endurance training in the alleviation of muscle hypertrophy/atrophy should be considered in the management of patients with advanced neuromuscular diseases. Patients with progressive neuromuscular diseases often experience muscle weakness, which negatively impact independence and quality of life levels. Mutations in the valosin containing protein (VCP) gene lead to Inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia (IBMPFD) and more recently affect 2% of amyotrophic lateral sclerosis (ALS)-diagnosed cases.

Methods/Principle Findings

The present investigation was undertaken to examine the effects of uphill and downhill exercise training on muscle histopathology and the autophagy cascade in an experimental VCP mouse model carrying the R155H mutation. Progressive uphill exercise in VCPR155H/+ mice revealed significant improvement in muscle strength and performance by grip strength and Rotarod analyses when compared to the sedentary mice. In contrast, mice exercised to run downhill did not show any significant improvement. Histologically, the uphill exercised VCPR155H/+ mice displayed an improvement in muscle atrophy, and decreased expression levels of ubiquitin, P62/SQSTM1, LC3I/II, and TDP-43 autophagy markers, suggesting an alleviation of disease-induced myopathy phenotypes. There was also an improvement in the Paget-like phenotype.

Conclusions

Collectively, our data highlights that uphill exercise training in VCPR155H/+ mice did not have any detrimental value to the function of muscle, and may offer effective therapeutic options for patients with VCP-associated diseases.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View