Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Targeted Quantitative Profiling of GTP-Binding Proteins in Cancer Cells Using Isotope-Coded GTP Probes.

Abstract

GTP-binding proteins play important roles in many essential biological processes, including cell signaling, trafficking, and protein synthesis. To assess quantitatively these proteins at the whole proteome level, we developed a high-throughput targeted proteomic method based on the use of isotope-coded GTP probes and multiple-reaction monitoring (MRM) analysis. Targeted proteins were labeled with desthiobiotin-GTP probes, digested with trypsin, and the ensuing desthiobiotin-conjugated peptides were enriched with streptavidin beads for LC-MS/MS analysis. We also established a Skyline MRM library based on shotgun proteomic data acquired for 12 different human cell lines. The library contained 605 tryptic peptides derived from 217 GTP-binding proteins, representing approximately 60% of the annotated human GTP-binding proteome. By using this library, in conjunction with isotope-coded GTP probes and scheduled LC-MRM analysis, we investigated the differential expression of GTP-binding proteins in a pair of primary/metastatic colon cancer cell lines (SW480 and SW620). We were able to quantify 97 GTP-binding proteins, and we further validated the differential expression of several GTP-binding proteins by Western blot analysis. Together, we developed a facile targeted quantitative proteomic method for the high-throughput analysis of GTP-binding proteins and applied the method for probing the altered expression of these proteins involved in colon cancer metastasis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View