- Main
Neutrosophic segmentation of breast lesions for dedicated breast computed tomography
Published Web Location
https://doi.org/10.1117/1.jmi.5.1.014505Abstract
We proposed the neutrosophic approach for segmenting breast lesions in breast computed tomography (bCT) images. The neutrosophic set considers the nature and properties of neutrality (or indeterminacy). We considered the image noise as an indeterminate component while treating the breast lesion and other breast areas as true and false components. We iteratively smoothed and contrast-enhanced the image to reduce the noise level of the true set. We then applied one existing algorithm for bCT images, the RGI segmentation, on the resulting noise-reduced image to segment the breast lesions. We compared the segmentation performance of the proposed method (named as NS-RGI) to that of the regular RGI segmentation. We used 122 breast lesions (44 benign and 78 malignant) of 111 noncontrast enhanced bCT cases. We measured the segmentation performances of the NS-RGI and the RGI using the Dice coefficient. The average Dice values of the NS-RGI and RGI were 0.82 and 0.80, respectively, and their difference was statistically significant ([Formula: see text]). We conducted a subsequent feature analysis on the resulting segmentations. The classifier performance for the NS-RGI ([Formula: see text]) improved over that of the RGI ([Formula: see text], [Formula: see text]).
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-