Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Accurate Classical Polarization Solution with No Self-Consistent Field Iterations

Abstract

We present a new solution for classical polarization that does not require any self-consistent field iterations, the aspect of classical polarization that makes it computationally expensive. The new method builds upon our iEL/SCF Lagrangian scheme that defines a set of auxiliary induced dipoles whose original purpose was to serve as a time-reversible initial guess to the SCF solution of the set of real induced dipoles. In the new iEL/0-SCF approach the auxiliary dipoles now drive the time evolution of the real induced dipoles such that they stay close to the Born-Oppenheimer surface in order to achieve a truly SCF-less method. We show that the iEL/0-SCF exhibits no loss of simulation accuracy when analyzed across bulk water, low to high concentration salt solutions, and small solutes to large proteins in water. In addition, iEL/0-SCF offers significant computational savings over more expensive SCF calculations based on traditional 1 fs time step integration using symplectic integrators and is as fast as reversible reference system propagator algorithms with an outer 2 fs time step.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View