Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Comparison of biopsy under‐sampling and annual progression using hidden markov models to learn from prostate cancer active surveillance studies

Published Web Location

https://doi.org/10.1002/cam4.3549Creative Commons 'BY' version 4.0 license
Abstract

This study aimed to estimate the rates of biopsy undersampling and progression for four prostate cancer (PCa) active surveillance (AS) cohorts within the Movember Foundation's Global Action Plan Prostate Cancer Active Surveillance (GAP3) consortium. We used a hidden Markov model (HMM) to estimate factors that define PCa dynamics for men on AS including biopsy under-sampling and progression that are implied by longitudinal data in four large cohorts included in the GAP3 database. The HMM was subsequently used as the basis for a simulation model to evaluate the biopsy strategies previously proposed for each of these cohorts. For the four AS cohorts, the estimated annual progression rate was between 6%-13%. The estimated probability of a biopsy successfully sampling undiagnosed non-favorable risk cancer (biopsy sensitivity) was between 71% and 80%. In the simulation study of patients diagnosed with favorable risk cancer at age 50, the mean number of biopsies performed before age 75 was between 4.11 and 12.60, depending on the biopsy strategy. The mean delay time to detection of non-favorable risk cancer was between 0.38 and 2.17 years. Biopsy undersampling and progression varied considerably across study cohorts. There was no single best biopsy protocol that is optimal for all cohorts, because of the variation in biopsy under-sampling error and annual progression rates across cohorts. All strategies demonstrated diminishing benefits from additional biopsies.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View