Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Zonal flow production in the L–H transition in Alcator C-Mod

Abstract

Transitions of tokamak confinement regimes from low- to high-confinement are studied on Alcator C-Mod (Hutchinson et al 1994 Phys. Plasmas 1 1511) tokamak using gas-puff-imaging, with a focus on the interaction between the edge drift-turbulence and the local shear flow. Results show that the nonlinear turbulent kinetic energy transfer rate into the shear flow becomes comparable to the estimated value of the drift turbulence growth rate at the time the turbulent kinetic energy starts to drop, leading to a net energy transfer that is comparable to the observed turbulence losses. A corresponding growth is observed in the shear flow kinetic energy. The above behavior is demonstrated across a series of experiments. Thus both the drive of the edge zonal flow and the initial reduction of turbulence fluctuation power are shown to be consistent with a lossless kinetic energy conversion mechanism, which consequently mediates the transition into H-mode. The edge pressure gradient is then observed to build on a slower (1ms) timescale, locking in the H-mode state. These results unambiguously establish the time sequence of the transition as: first the peaking of the normalized Reynolds power, then the collapse of the turbulence, and finally the rise of the diamagnetic electric field shear as the L-H transition occurs. © 2014 IOP Publishing Ltd.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View