Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Superconducting Phases in Lithium Decorated Graphene LiC6

Abstract

A study of possible superconducting phases of graphene has been constructed in detail. A realistic tight binding model, fit to ab initio calculations, accounts for the Li-decoration of graphene with broken lattice symmetry, and includes s and d symmetry Bloch character that influences the gap symmetries that can arise. The resulting seven hybridized Li-C orbitals that support nine possible bond pairing amplitudes. The gap equation is solved for all possible gap symmetries. One band is weakly dispersive near the Fermi energy along Γ → M where its Bloch wave function has linear combination of [Formula: see text] and dxy character, and is responsible for [Formula: see text] and dxy pairing with lowest pairing energy in our model. These symmetries almost preserve properties from a two band model of pristine graphene. Another part of this band, along K → Γ, is nearly degenerate with upper s band that favors extended s wave pairing which is not found in two band model. Upon electron doping to a critical chemical potential μ1 = 0.22 eV the pairing potential decreases, then increases until a second critical value μ2 = 1.3 eV at which a phase transition to a distorted s-wave occurs. The distortion of d- or s-wave phases are a consequence of decoration which is not appear in two band pristine model. In the pristine graphene these phases convert to usual d-wave or extended s-wave pairing.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View