Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Coaxial Electrospun Cellulose-Core Fluoropolymer-Shell Fibrous Membrane from Recycled Cigarette Filter as Separator for High Performance Lithium-Ion Battery

Abstract

This paper reports an eco-friendly approach for extracting cellulose acetate (CA) from waste cigarette filter to construct a cellulose-based membrane separator for a high-performance lithium-ion battery. A cellulose/poly(vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) nanofiber membrane was prepared by coaxial electrospinning of a cellulose acetate core and PVDF-HFP shell, then hydrolyzed by LiOH. The cellulose-core/PVD-HFP-shell fibrous membrane shows good tensile strength (34.1 MPa), high porosity (66%), excellent thermal stability (to 200 °C), and super electrolyte compatibility (355% electrolyte uptake). It has a lower interfacial resistance (98.5 Ω) and higher ionic conductivity (6.16 mS cm-1) than those of commercial separators (280.0 Ω and 0.88 mS cm-1). In addition, the rate capability (138 mAh·g-1) and cycling performance (75.4% after 100 cycles) are also superior to those of the commercial separators, demonstrating the cellulose-core fibrous membrane to be a promising separator for a high-power and more secure lithium-ion battery.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View