Skip to main content
eScholarship
Open Access Publications from the University of California

Experimental Demonstration of Frequency Regulation by Commercial Buildings—Part I: Modeling and Hierarchical Control Design

Abstract

This paper is the first part of a two-part series in which we present results from one of the first worldwide experimental demonstrations of frequency regulation in a commercial building test facility. We demonstrate that commercial buildings can track a frequency regulation signal with high accuracy and minimal occupant discomfort in a realistic environment. In addition, we show that buildings can determine the reserve capacity and baseline power a priori, and identify the optimal tradeoff between frequency regulation and energy efficiency. In part I, we introduce the test facility and develop relevant building models. Furthermore, we design a hierarchical controller for the heating, ventilation, and air conditioning system that consists of three levels: 1) a reserve scheduler; 2) a building climate controller; and 3) a fan speed controller for frequency regulation. We formulate the reserve scheduler as a robust optimization problem and introduce several approximations to reduce its complexity. The building climate controller is comprised of a robust model predictive controller and a Kalman filter. The frequency regulation controller consists of a feedback and a feedforward loop, provides fast responses, and is stable. Part I presents building model identification and controller tuning results. Specifically, we find out that with an appropriate formulation of the model identification problem, a two-state model is accurate enough for use in a reserve scheduler that runs day-ahead. In part II, we report results from the operation of the hierarchical controller under frequency regulation.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View