Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Distinct functions of integrin alpha and beta subunit cytoplasmic domains in cell spreading and formation of focal adhesions.

  • Author(s): Ylänne, J
  • Chen, Y
  • O'Toole, TE
  • Loftus, JC
  • Takada, Y
  • Ginsberg, MH
  • et al.
Abstract

Integrin-mediated cell adhesion often results in cell spreading and the formation of focal adhesions. We exploited the capacity of recombinant human alpha IIb beta 3 integrin to endow heterologous cells with the ability to adhere and spread on fibrinogen to study the role of integrin cytoplasmic domains in initiation of cell spreading and focal adhesions. The same constructs were also used to analyze the role of the cytoplasmic domains in maintenance of the fidelity of the integrin repertoire at focal adhesions. Truncation mutants of the cytoplasmic domain of alpha IIb did not interfere with the ability of alpha IIb beta 3 to initiate cell spreading and form focal adhesions. Nevertheless, deletion of the alpha IIb cytoplasmic domain allowed indiscriminate recruitment of alpha IIb beta 3 to focal adhesions formed by other integrins. Truncation of the beta 3 subunit cytoplasmic domain abolished cell spreading mediated by alpha IIb beta 3 and also abrogated recruitment of alpha IIb beta 3 to focal adhesions. This truncation also dramatically impaired the ability of alpha IIb beta 3 to mediate the contraction of fibrin gels. In contrast, the beta 3 subunit cytoplasmic truncation did not reduce the fibrinogen binding affinity of alpha IIb beta 3. Thus, the integrin beta 3 subunit cytoplasmic domain is necessary and sufficient for initiation of cell spreading and focal adhesion formation. Further, the beta 3 cytoplasmic domain is required for the transmission of intracellular contractile forces to fibrin gels. The alpha subunit cytoplasmic domain maintains the fidelity of recruitment of the integrins to focal adhesions and thus regulates their repertoire of integrins.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View