- Main
Powerful eQTL mapping through low-coverage RNA sequencing
Published Web Location
https://doi.org/10.1016/j.xhgg.2022.100103Abstract
Mapping genetic variants that regulate gene expression (eQTL mapping) in large-scale RNA sequencing (RNA-seq) studies is often employed to understand functional consequences of regulatory variants. However, the high cost of RNA-seq limits sample size, sequencing depth, and, therefore, discovery power in eQTL studies. In this work, we demonstrate that, given a fixed budget, eQTL discovery power can be increased by lowering the sequencing depth per sample and increasing the number of individuals sequenced in the assay. We perform RNA-seq of whole-blood tissue across 1,490 individuals at low coverage (5.9 million reads/sample) and show that the effective power is higher than that of an RNA-seq study of 570 individuals at moderate coverage (13.9 million reads/sample). Next, we leverage synthetic datasets derived from real RNA-seq data (50 million reads/sample) to explore the interplay of coverage and number individuals in eQTL studies, and show that a 10-fold reduction in coverage leads to only a 2.5-fold reduction in statistical power to identify eQTLs. Our work suggests that lowering coverage while increasing the number of individuals in RNA-seq is an effective approach to increase discovery power in eQTL studies.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-