Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Tomoregulin (TMEFF2) Binds Alzheimer’s Disease Amyloid-β (Aβ) Oligomer and AβPP and Protects Neurons from Aβ-Induced Toxicity

Abstract

Amyloid-β (Aβ) protein causes neurotoxicity and its abnormal aggregation into amyloid is a pathological hallmark of Alzheimer's disease (AD). Cellular proteins able to interact with Aβ or its precursor, AβPP (amyloid-β protein precursor), may regulate Aβ production and neurotoxicity. We identified a brain-enriched type I transmembrane protein, tomoregulin (TR), that directly binds Aβ and Aβ oligomers (AβO). TR co-immunoprecipitated with Aβ and AβO in cultured cells and co-localized with amyloid plaques and intraneuronal Aβ in the 5xFAD AD mouse model. TR was also enriched in astrocytic processes reactive to amyloid plaques. Surface plasmon resonance spectroscopy studies showed that the extracellular domain of TR binds to AβO with a high affinity (KD = 76.8 nM). Electron paramagnetic resonance spectroscopy also demonstrated a physical interaction between spin-labeled Aβ and the TR extracellular domain in solution. Furthermore, TR also interacted with AβPP and enhanced its cleavage by α-secretase. Both cellular expression of TR and application of recombinant TR extracellular domain protected N2a neurons from AβO-induced neuronal death. These data provide first evidence that neuronal and astrocytic expression of TR is intimately related to Aβ metabolism and toxicity, and could be neuroprotective through its direct interaction with Aβ and AβPP.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View