Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Coupled nuclear–electronic decay dynamics of O 2 inner valence excited states revealed by attosecond XUV wave-mixing spectroscopy

Abstract

Multiple Rydberg series converging to the O2+c4Σ-u state, accessed by 20-25 eV extreme ultraviolet (XUV) light, serve as important model systems for the competition between nuclear dissociation and electronic autoionization. The dynamics of the lowest member of these series, the 3sσg state around 21 eV, has been challenging to study owing to its ultra-short lifetime (<10 fs). Here, we apply transient wave-mixing spectroscopy with an attosecond XUV pulse to investigate the decay dynamics of this electronic state. Lifetimes of 5.8 ± 0.5 fs and 4.5 ± 0.7 fs at 95% confidence intervals are obtained for v = 0 and v = 1 vibrational levels of the 3s Rydberg state, respectively. A theoretical treatment of predissociation and electronic autoionization finds that these lifetimes are dominated by electronic autoionization. The strong dependence of the electronic autoionization rate on the internuclear distance because of two ionic decay channels that cross the 3s Rydberg state results in the different lifetimes of the two vibrational levels. The calculated lifetimes are highly sensitive to the location of the 3s potential with respect to the decay channels; by slight adjustment of the location, values of 6.2 and 5.0 fs are obtained computationally for the v = 0 and v = 1 levels, respectively, in good agreement with experiment. Overall, an intriguing picture of the coupled nuclear-electronic dynamics is revealed by attosecond XUV wave-mixing spectroscopy, indicating that the decay dynamics are not a simple competition between isolated autoionization and predissociation processes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View