Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Effects of breastfeeding on childrens gut colonization with multidrug-resistant Enterobacterales in peri-urban Lima, Peru.

Abstract

Children living in low-resource settings are frequently gut-colonized with multidrug-resistant bacteria. We explored whether breastfeeding may protect against childrens incident gut colonization with extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-Ec) and Klebsiella, Enterobacter, or Citrobacter spp. (ESBL-KEC). We screened 937 monthly stool samples collected from 112 children aged 1-16 months during a 2016-19 prospective cohort study of enteric infections in peri-urban Lima. We used 52,816 daily surveys to examine how exposures to breastfeeding in the 30 days prior to a stool sample were associated with childrens risks of incident gut-colonization, controlling for antibiotic use and other covariates. We sequenced 78 ESBL-Ec from 47 children to explore their diversity. Gut-colonization with ESBL-Ec was increasingly prevalent as children aged, approaching 75% by 16 months, while ESBL-KEC prevalence fluctuated between 18% and 36%. Through 6 months of age, exclusively providing human milk in the 30 days prior to a stool sample did not reduce childrens risk of incident gut-colonization with ESBL-Ec or ESBL-KEC. From 6 to 16 months of age, every 3 additional days of breastfeeding in the prior 30 days was associated with 6% lower risk of incident ESBL-Ec gut-colonization (95% CI: 0.90, 0.98, p = .003). No effects were observed on incident ESBL-KEC colonization. We detected highly diverse ESBL-Ec among children and few differences between children who were predominantly breastfed (mean age: 4.1 months) versus older children (10.8 months). Continued breastfeeding after 6 months conferred protection against childrens incident gut colonization with ESBL-Ec in this setting. Policies supporting continued breastfeeding should be considered in efforts to combat antibiotic resistance.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View