Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Sterile neutrino dark matter and leptogenesis in Left-Right Higgs Parity

Abstract

The standard model Higgs quartic coupling vanishes at (109 − 1013) GeV. We study SU(2)L× SU(2)R× U(1)B−L theories that incorporate the Higgs Parity mechanism, where this becomes the scale of Left-Right symmetry breaking, vR. Furthermore, these theories solve the strong CP problem and predict three right-handed neutrinos. We introduce cosmologies where SU(2)R× U(1)B−L gauge interactions produce right-handed neutrinos via the freeze-out or freeze-in mechanisms. In both cases, we find the parameter space where the lightest right-handed neutrino is dark matter and the decay of a heavier one creates the baryon asymmetry of the universe via leptogenesis. A theory of flavor is constructed that naturally accounts for the lightness and stability of the right-handed neutrino dark matter, while maintaining sufficient baryon asymmetry. The dark matter abundance and successful natural leptogenesis require vR to be in the range (1010− 1013) GeV for freeze-out, in remarkable agreement with the scale where the Higgs quartic coupling vanishes, whereas freeze-in requires vR ≳ 109 GeV. The allowed parameter space can be probed by the warmness of dark matter, precise determinations of the top quark mass and QCD coupling by future colliders and lattice computations, and measurement of the neutrino mass hierarchy.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View