Skip to main content
eScholarship
Open Access Publications from the University of California

Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass

  • Author(s): Emmer, H
  • Chen, CT
  • Saive, R
  • Friedrich, D
  • Horie, Y
  • Arbabi, A
  • Faraon, A
  • Atwater, HA
  • et al.

Published Web Location

https://doi.org/10.1038/s41598-017-05012-w
No data is associated with this publication.
Abstract

© 2017 The Author(s). Due to its high refractive index and low absorption coefficient, gallium phosphide is an ideal material for photonic structures targeted at the visible wavelengths. However, these properties are only realized with high quality epitaxial growth, which limits substrate choice and thus possible photonic applications. In this work, we report the fabrication of single crystal gallium phosphide thin films on transparent glass substrates via transfer bonding. GaP thin films on Si (001) and (112) grown by MOCVD are bonded to glass, and then the growth substrate is removed with a XeF2 vapor etch. The resulting GaP films have surface roughnesses below 1 nm RMS and exhibit room temperature band edge photoluminescence. Magnesium doping yielded p-type films with a carrier density of 1.6 × 1017cm-3that exhibited mobilities as high as 16 cm2V-1s-1. Due to their unique optical properties, these films hold much promise for use in advanced optical devices.

Item not freely available? Link broken?
Report a problem accessing this item