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Abstract

Optimal Policy Structures of Stochastic Supply Chains with Outsourced Logistics
Agreements

by

Osman Engin Alper

Doctor of Philosophy in Engineering – Industrial Engineering and Operations Research

University of California, Berkeley

Professor Philip M. Kaminsky, Chair

As evidenced by the rapid growth of the third-party logistics industry, more and more firms
are electing to outsource logistics in order to cut costs and to focus on core competencies.
One of the key decisions faced by firms when engaging third party logistics providers involves
the nature of the agreement with the provider. Agreements range from requirements for
service on demand to more structured agreements, in which the timing and size of shipment
quantities are specified in advance. By agreeing to more structured arrangements, firms
can decrease the uncertainty faced by the logistics provider and thus the logistics provider’s
costs, and therefore negotiate better rates. In order to understand the impact of using
more structured agreements, however, firms need to understand how to effectively utilize the
service provided in these agreements.

In this dissertation, motivated by these observations, we develop stylized models of simple
production-distribution systems in order to explore the efficient use of structured logistics
agreements. First, we introduce the general framework of models that we explore in this
manuscript and present our motivation behind it. Second, we present a brief review of the
stochastic supply chain literature. In this field, while there has been considerable interest in
especially the supply contracts, the emphasis has been mostly on channel coordination and
other informational efficiency aspects rather than the operational efficiency that we focus on.
Third, we introduce our basic model with a fixed commitment logistics contract in a make-
to-order production setting. We mathematically formulate this problem using stochastic
dynamic programming and fully characterize the optimal policy structure. We prove some
important properties of the optimal policy function that describe its sensitivity to reserved
capacity levels and shipment times in the contract. We also provide sufficient conditions for
decomposing this problem in time, whereby the complexity in computationally determining
the optimal policy parameters can be greatly reduced. Fourth, we extend our model to a
make-to-stock production environment and again completely characterize the structure of
the optimal policy function. We show monotonicity of the optimal function parameters with
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respect to committed capacities in all cases and with respect to time in the periodic shipment
case. Fifth, we analyze and extend our results regarding the optimal policy structure to more
sophisticated logistics agreements such as option contracts and multi-level option contracts,
and introduce additional uncertainties to the system such as stochastic spot market price
and stochastic availability of additional capacity. Sixth, we present an initial analysis of the
logistics agreements with shipment times chosen dynamically by the contact buyer. Lastly,
we provide a computational study illustrating the sensitivity of optimal contract parameters
to demand uncertainty and cost parameters, as well as exploring the relative benefits of
different logistics agreements under varying operating conditions.

Overall, we investigate simplified models of production-distribution systems with out-
sourced logistics, our analysis and characterization of optimal policies provide some insight
into the practical use of transportation contracts in addition to building a foundation for fu-
ture investigation of models that incorporate more complicated critical aspects of important
real-world problems relating to integrated production and distribution management in the
presence of outsourced logistics agreements.
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Chapter 1

Introduction

The purpose of this dissertation is to investigate the effective utilization of structured
logistics agreements in production-distribution systems with stochastic demand in order
to understand how optimal policies of such systems are affected by outsourced logistics
while gaining managerial insights into practical real-life applications and contributing to the
stochastic supply chain literature. To that extent, in this manuscript:

1. We propose simplified models of production-distribution systems with logistics agree-
ments, mathematically formulate them using stochastic dynamic programming, and
analyze their optimal policy structures;

2. Through a computational study combined with our analytical results regarding the
properties of the optimal policy functions, we explore how relative benefits of the
different logistics agreements we consider and their optimal contract parameters change
under varying operating conditions.

There has been limited previous work that explicitly consider structured agreements be-
tween logistics providers and their clients. As a related area, supply contracts have gathered
considerably greater attention, but the emphasis has been mostly on channel coordination
and other informational efficiency aspects rather than the operational policies that we focus
on. Among the work that have a similar outlook, Alp et al. [1] model a transportation
contract design problem; Whittemore [80] shows optimal ordering policies when there are
two supply options, one being faster and more expensive than the other; Blumfeld et al. [9]
and Gallego and Simchi-Levi [34] look at integrated inventory control and vehicle dispatch-
ing problems; Yano and Gerchak [83] and Yano [82] consider expedited shipments in their
models, and determine optimal agreement parameters assuming a base-stock ordering policy;
Henig et al. [39] investigate optimal ordering policies under a given supply contract.

In our base case model, we consider a firm utilizing a fixed-date, fixed-capacity trans-
portation agreement for shipping to its retail site. In each period, this firm must decide
how much to ship, possibly nothing, from a warehouse to a retailer to meet demand at
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the retailer, utilizing a combination of shipping capacity already agreed to via a structured
logistics agreement, and shipping capacity available on the spot market. Note that since
there is a cost to holding inventory at the retailer, it does not always make sense to utilize
all of the available contracted capacity, even though this capacity is already paid for. For
this setting, we characterize the optimal shipping policy, which we show to be coupled with
the production policy in this setting owing to our simplifying assumptions of uncapacitated
production with linear cost and no delay. This modeling approach is to some extent simi-
lar to [39] in that we study the optimal behavior of a simple system with a single decision
variable under a given contract, however we consider both make-to-stock and make-to-order
production environments and a general fixed commitment contract instead of a contract with
constant reserved capacity in each period. This allows us to capture the time between ship-
ments in the transportation contract realistically as an integer multiple of the review period.
Moreover, we extend this base case analysis to more sophisticated contracts such as option
contracts and multi-level option contracts, as well as introducing additional uncertainties
to the system such as stochastic spot market price and stochastic availability of additional
capacity.

In the rest of this chapter, we first briefly give our motivation for choosing this area, and
then present a brief overview of our work.

1.1 Motivation

Production and distribution operations are generally critical operational functions in
manufacturing supply chains. Indeed, United States industry spends more than $350 billion
on transportation and more than $250 billion on inventory holding costs annually (Lambert
and Stock [52]). Although production and distribution operations can typically be decoupled
if there is sufficient inventory between them, this approach leads to overall higher inventory
levels and longer lead times in the supply chain than if these functions are more closely linked.
Indeed, as supply chain inventory reduction efforts are becoming more and more common,
the linkages between production and distribution are becoming tighter and tighter, requiring
a significant focus on decision making in which production and distribution operations are
optimized in an integrated manner.

On the other hand, over the last decade, more and more firms have elected to out-
source their logistics-related responsibilities. Indeed, the last decade has witnessed a rapid
growth of the global third-party logistics (3PL) industry, which was estimated at $390 billion
(Quinn [61]) in 2007. Traditionally, the 3PL-client relationship has been an unstructured
one, built around long-term strategic relationships in which the 3PL provider commits to
providing whatever resources the client demands, whenever the resources are needed. How-
ever, Coffey et al. [20] cite dramatically declining margins among 3PL providers, and suggests
that this high level of service may be too expensive to continue to offer, particularly in cases
when clients do not dramatically benefit from this service. As an example, [20] recounts
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the experience of a 3PL provider that reacts to daily shipment requests from a client, even
when these requests fluctuate wildly, even though these requests do not accurately reflect
the client’s customer demand, as the shipped goods may sit for weeks in a warehouse before
ultimately being sold. Given these declining margins, and the obvious difficulty faced by
3PL firms trying to take full advantage of the inherent economies of utilizing their resources
over a number of clients, [20] suggests that there will be growing use of more structured
agreements between 3PL providers and their clients, in which a specific schedule of services
is agreed to in advance, so that the 3PL provider can more effectively utilize these resources.

At the same time, increasing cost pressures mean that many firms that previously out-
sourced logistics are looking to cut the cost of logistics services. Decreasing margins at 3PL
providers, however, reduce the likelihood that contract negotiations will result in lower cost
for the same service – clearly, these firms will have to agree to a different level of service from
their 3PL providers in order to lower the price that 3PL providers charge. It is likely that
more structured logistics agreements will increasingly be an avenue for clients to reduce 3PL
provider costs. Of course, as logistics agreements become more structured, it is increasingly
important for the client firms to develop effective operating strategies that account for these
more structured logistics agreements.

1.2 Overview of Our Work

In this dissertation, we analyze effective operating strategies under a variety of different
structured operating agreements. By structured operating agreements, we mean arrange-
ments that explicitly limit the timing or capacity of logistics services over a specified time
horizon. For example, these agreements might specify the dates and capacity of individual
shipments over the next year (see [83]). In some arrangements, these dates and the capac-
ity might be fixed, while in others, these parameters might be flexible. In the base case
of our models, we analyze the optimal operating strategy for a firm that already has in
place a fixed-date, fixed-capacity logistics agreement with a 3PL provider. In all models we
consider, we assume that in addition to the logistics services available to the firm through
existing agreements with 3PL providers, the firm can purchase expedited shipping services
on an open market, although typically at a higher cost than those available through long
term agreements. Indeed, these long term agreements provide the buyer access to lower cost
transportation services, and at the same time allow the 3PL provider to plan and use its
resources more effectively. However, these agreements restrict the buyer’s ability to react to
changing market conditions, and thus we explore other types of agreements that allow more
flexibility in either timing or capacity of shipments, or provide the opportunity for the buyer
to purchase additional shipments at below market prices.

In Chapter 2, we present a brief review of the multi-echelon stochastic supply chain
literature. In Chapter 3, we introduce our base case model of a just-in time manufacturer
utilizing an outsourced logistic agreement for shipping to a retail site. In this chapter, we
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focus our attention on periodic fixed commitment contracts, which specify in advance the
volume to be reserved and the frequency to be shipped. In Section 3.2 and Section 3.3, we
analyze two special cases of this problem, which facilitate understanding of the fundamental
concepts and lay the groundwork for proving results regarding the structure of the optimal
policy function, its basic properties and a decomposition result for the general case we analyze
in Section 3.4. In Chapter 4, we start analyzing a variation of our base model within a make-
to-stock production environment, where the manufacturer can stock up inventory at the retail
location instead of reacting to incoming orders alone. Section 4.1 considers fixed commitment
contracts, establishes the optimal policy structure policy, and extends two fundamental
monotonicity results of the optimal policy parameters from Chapter 3 to the make-or-order
production environment. In Section 4.2, we consider option contracts, which give the right
to purchase shipping in the future at predetermined price and capacity. This section also
introduces additional uncertainty to the model with stochastic spot market rates whereby
these option contracts can be used as a hedging mechanism against spot market shipping
rates. Section 4.3 analyzes multi-level option agreements (or capacity flexible contracts), in
which a predetermined capacity is reserved by the logistics provider and committed by the
buyer (either by a fixed commitment or an option agreement), but a certain percentage of
this capacity can be supplied in addition to the reserved portion with an additional cost. In
Section 4.4, we extend our model to the case where additional capacity can be supplied to
the contract buyer at a fixed rate, but the availability of this additional capacity is driven
by an independent stochastic process. Section 4.5, on the other hand, models an agreement
that provides flexibility in shipping time rather than capacity. In Chapter 5, we present
our computational study; the sensitivity of the optimal contract parameters to demand
uncertainty and costs is investigated in Section 5.1 and the relative benefits of different
logistics agreements to the contract buyer under various operating conditions are explored
in Section 5.2. Chapter 6 concludes this dissertation, summarizing our main results and
proposing future work on related areas.
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Chapter 2

Literature Review

Although the models we consider in this manuscript have contractual elements in them,
in essence, they have their roots in classical multi-echelon inventory theory. That is because
we focus on the operational aspects of our models such as optimal ordering and shipping
decisions that minimize costs instead of channel coordination problems that have been mostly
studied in this context. From an operational perspective, classical inventory control problems
can be interpreted as special cases of the corresponding inventory control problems with
contracts. As a simple example to illustrate this idea, consider the classical finite horizon
periodic review newsvendor problem. As Anupindi and Bassok [2] point out, this classical
problem can be viewed as analysis of a contract (say, newsvendor supply contract) with a
given horizon length, proportional purchase price (often considered fixed), fixed periodicity
of ordering (given by the period length), no commitments, and unlimited flexibility (there
are usually no limits on the order quantity).

As a consequence of this close relationship, in this chapter, we present a brief review of
the multi-echelon inventory models, which are also central to the supply chain management
literature. The theory is voluminous with categories by, e.g., demand characteristics (deter-
ministic, stochastic), and control characteristics (periodic review, continuous review). We
will focus on stochastic periodic review problems as that is what we adopt in our models.
Although, we note that, there is generally a direct correspondence between discrete-time and
continuous-time models under certain assumptions. Some well known books that cover the
essentials of this field are Porteus [60], Zipkin [86], and Simchi-Levi et al. [74].

2.1 The Clark-Scarf Model and its Extensions

The interest in stochastic inventory problems traces back to Arrow et al. [4], see Arrow
[3] for a personal account on the genesis of this paper. Their work studies many aspects of
inventory theory including some deterministic models, the now popular single-period news-
vendor model, and general dynamic problems. In their analysis of the dynamic problem,
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they make the specific assumption that the cost of purchasing stock is composed of two
parts: a setup cost K incurred whenever an order is placed, and a unit cost c proportional
to the size of the order. This is the case in which the optimal inventory policy was suspected
to be an (s, S) policy. The optimality of such a policy was not known when [4] was written.
What they did instead was to restrict their attention to policies of this particular form to
calculate the discounted expected cost associated with each such policy and to discuss the
selection of that pair (s, S) yielding the lowest cost.

Karlin and Scarf [47] extends the inventory models in [4] by adding a time lag, l, between
the order and the arrival of the items. This problem is readily representable by extending
the dimension of the state space by l − 1. However since the decision at any period affects
the cost function in l periods, the cost in the next l − 1 periods is fixed. Moreover, if we
assume the excess demand is backlogged at every period then the order of the extended
state vector is irrelevant to the cost function after the order time lag, only the sum of the
elements of this vector plays a role. Hence the policy problem can be converted to the original
single state dynamic problem very easily with an additional constant term depending on the
initial extended state whenever excess demand is backlogged. In other words, the inventory
problem with a time lag reduces to one in which essentially no lag exists.

Note that when there is positive order leadtime and excess demand is lost rather than
backordered, the total cost is a non-linear function of the vector of outstanding orders and
the optimal policy is extremely complex. Because of the complexity of the optimal pol-
icy the research on this area is concentrated on finding bounds on the optimal policy and
approximating it. See Morton [53] for an approximation to the proportional cost infinite
horizon problem and Nahmias [55] for different approximations methods for several leadtime
lost sales inventory models including a positive setup cost for ordering, uncertainty in the
leadtime, and partial backordering of demand.

Kaplan [45] analyzed an extension of [47] to incorporate leadtime uncertainty. What
makes the random leadtime problem difficult is the way one treats order crossing. If or-
ders are placed with one supplier it is unlikely that they would cross in time; that is,
an order placed on Monday should arrive before one placed on Tuesday even though the
exact arrival times may not be certain. The difficulty is that if orders are not permit-
ted to cross, successive leadtimes are dependent random variables. Kaplan treats this
order crossing issue cleverly in his formulation of the problem by defining probabilities,
pi = Pr{all orders placed i or more periods ago arrive in the current period}. This formu-
lation guarantees that orders do not cross since the arrival of an order i periods ago forces
the arrival of orders placed i + 1, i + 2,..., m periods ago as well. The likelihood that the
leadtime is i periods, qi, may be computed from pi. It is the values of qi one would observe
in a real system. In [45] using this formulation and assuming no order setup cost, it is shown
that the optimal policy is a critical number policy in every period. Hence the deterministic
leadtime results carry over to this model of stochastic leadtimes.

Karlin [48] extends the dynamic inventory model of [4] by allowing the distribution of
the stochastic demand function to change from period to period while still maintaining
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independence. Hence the demand variables in every period are still independent but not
identically distributed. It is shown that the base-stock policy remains to be optimal, although
now the critical numbers (order-up-to levels) varies with the period. However, this is not the
main objective of this paper. Its real contribution is providing qualitative results describing
the variations of the critical numbers over time as a function of the demand distributions
in all future periods when the distributions are stochastically ordered. The model in Karlin
[49] is a special case of the one in [48] when the demand functions change in a cyclical
pattern, which could reflect a situation where the demand undergoes seasonal variations.
The structure of the optimal policy does not change as before, only the critical numbers
again depend on the period (in particular, that period’s relative place in the cycle). More
importantly, a computational method for determining explicitly the critical numbers, which
characterize the optimal policy is provided. In both papers infinite horizon discounted cost
criterion is assumed. The proofs in both papers and the validation of the computational
method rely on analysis of the infinite horizon functional equation and its solution. Zipkin
[85] considers the same problem, provides a more elementary method of proof which applies
to the infinite horizon periodic demand problem under both discounted and average cost
criteria, and also extends the results to the case of cyclic cost functions as well as demand
distributions. Moreover, qualitative description of the varying optimal critical numbers over
time in [48] is extended to the nonstationary costs case, and given a new interpretation based
on exponential smoothing technique.

Scarf [68] extends the news-vendor model with setup cost to multiple periods and by
naturally devising the now well known K-convexity, shows optimality of the (s, S) policy.
Then in their seminal work Clark and Scarf [18] extends this single-installation model to
a purely serial supply chain with time lags between each installation. In their model they
assume that the demand originates in the system at the lowest installation, and at no other
point in the system; and that each installation backlogs excess demand. Clark in his earlier
work recursively defines the ”echelon stock” as the total stock consisting of the on hand
inventory level (for all the installations except the bottom one this is physical on hand stock
hence nonnegative, for the bottom installation this is on hand stock minus backlog) at any
given installation plus the stock in transit to the next lower installation plus the echelon stock
in that installation. Using this concept, they construct a cost structure in which the holding
and shortage costs are functions of the echelon stock levels at each installation and the cost
of purchasing and shipping an item is linear only exception being the highest installation,
where a setup cost is permitted. This cost structure turns out to be a crucial assumption
in the decomposition of the total system cost function into a sum of echelon cost functions,
which is shown by a simple induction argument on time periods. In numerous extensions of
this model in the inventory control literature, this cost structure is implemented as linear
holding costs at every installation increasing towards the bottom of the system, which is
justified by added value to the item as it progresses down the serial structure. The shortage
cost is generally assigned only to the bottom installation, being the zero function at every
other installation.
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The emerging key idea is that some kind of a penalty, which they call “induced penalty
cost”, must be induced on an installation for keeping a quantity of stock on hand which is
insufficient to meet the normal requests from the lower installation. This penalty is merely
the expected increment in total cost of the lower installation caused by the shortage of
items in the higher installation. The result of the decomposition is a series of single-location
problems. The lowest installation, which faces customer demand, considers only its own
costs; ignoring all others. Under the assumed cost structure a critical-number policy solves
this problem. The optimal policy and expected cost function for this installation are then
used to define a convex induced penalty function which is added to the one-period cost
function of the next installation in the system. This procedure is repeated until the highest
installation. The problem of the highest installation, which makes ordering decisions with
fixed and proportional cost structure, is solved by an (s, S) policy. This solution constitutes
an optimal order policy for the whole system. In this paper, they also extend this model
to the case where multiple installations face direct demand and also show by an example
that decomposition is not possible in a non-serial supply chain structure. This reference is
later cited as one of the 10 most influential papers published in Management Science in the
50 years of the journal’s existence. See Clark [17], and Scarf [69] for interesting comments
on [18]. Also see Clark [16] for a retrospective on multi-echelon inventory theory, Scarf [70]
for his personal reflections on inventory theory, and Veinott [77] for an extensive survey
of mathematical inventory theory as of 1966 including both deterministic and stochastic
dynamic models. The result of [18] has been reproved using novel approaches; Chen and
Zheng [15] use cost allocation lower bounds to show the result in infinite horizon average
cost case, and Muharremoglu and Tsitsiklis [54] uses an alternative approach based on item-
customer decomposition to prove the result for finite and infinite horizon problems under
both average and discounted cost criteria. These two papers will be reviewed shortly later
in the document.

While this decomposition and the resulting solution procedure greatly simplifies the orig-
inal problem, actual computation of an optimal policy still encounters substantial obstacles.
First, two sets of recursive functional equations instead of one set of recursive equations on
a composed larger dimension state space must be solved numerically. Secondly and in addi-
tion to the first, each evolution of the induced penalty cost function itself entails a numerical
integration over the optimal cost function for the lower installation’s problem; indeed, with
an order leadtime of several periods, the computation requires a double integration.

These computational issues makes the extension of [68] to infinite horizon case especially
rewarding. Iglehart makes the first attempt of tackling this task in Iglehart [42] and [43].
In [43], he proves the optimality of (s, S) policy in the infinite horizon discounted cost case
by assuming unimodularity of an endogenous value function. Although the complete proof
eludes him; he shows that the series {sn} and {Sn} are uniformly bounded, and by using
this shows the uniform convergence of value functions.

Federgruen and Zipkin [28] show that the qualitative result of [18] extends to the infinite
horizon case, first under the criterion of discounted cost, and then by using this under the
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long-term average cost. The resulting two single-location problems are computationally
much easier to solve than their respective finite-horizon versions as is often the case in
dynamic problems. They also show that in the infinite horizon problems the induced penalty
cost functions are stationary, do not involve optimal cost functions, and require at most
one numerical integration. The case of normally distributed demands requires no explicit
numerical integration and the penalty cost can be expressed in terms of univariate and
bivariate normal cumulative functions, which are readily available in standard statistical
packages. In summary, this important paper does not only fill a theoretical gap but provides
considerable simplifications in practical implementation of the results in [18].

The construction of the infinite horizon problems are as in Veinott [75], where the value
functions are defined on the class of infinite-horizon measurable policies and the realization
of the entire sequence of demands. Firstly, the induced penalty functions are shown to
uniformly converge to a limit function. This limit function, as all the induced penalty
functions converging to it, is nonnegative and convex. Then using this result, they show
that the difference between the cost functions defined with this limit function the original
ones uniformly converges to zero as the planning horizon goes to infinity. Hence the defined
limiting cost functions represent the stationary versions of the original ones, and the results
follow directly from this for both the discounted and average cost criteria. The analysis
in this paper draws heavily on [42], [43], uses well-established convergence properties of
discounted and average cost infinite horizon stochastic inventory problems in Heyman and
Sobel [40] and Bertsekas and Shreve [7]. The reader is further referred to Bertsekas [6] for
a general treatment of dynamic programming and to Rudin [67] for a concise treatment of
real analysis.

Even though the original proof in [18] can be modified to handle time varying demand
distributions, the demand distributions over time would still need to be independent of each
other. Chen and Song [13] generalize the results of [18] to the case where the outside demand
distribution is modulated by an exogenous Markov process. The Markov-modulated demand
process extends the application of the basic model to a wide range of fluctuating demand
environments attributable to, e.g., seasonal effects, price changes, market conditions, and
demand forecasts. This type of a demand model, where the distribution of demand depends
on the state of a modulating Markov chain has been used in many papers in literature
considering single-location inventory models. The collective insight of these works is that
the optimal policy for a model with fluctuating demand has the same structure as that in
its stationary counterpart, except that the policy parameters must be adjusted to reflect the
dynamics of the underlying demand environment. [13] shows that this insight can be carried
over to multi-echelon settings.

They assume constant leadtime, proportional ordering costs at every stage, and that
the demand process is driven by a discrete-time finite state Markov chain, which is time
homogeneous and ergodic. These assumptions imply that this Markov chain has a unique
stationary distribution. Since they consider the infinite horizon problem under average cost
criterion, this setup facilitates the establishment of of a lower bound on the long-run average
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cost of any feasible policy through a series of demand-state reductions. Then they show that
this lower bound is reached by a state-dependent base-stock policy.

They note that the result of this model can be extended to the case where there is a
fixed ordering cost at the highest stage in which case the optimal policy at that stage is
an echelon (s, S) policy. Since the lower-bounding procedure eventually reduces the multi-
stage problem to a single-stage one; this extension is possible by using the results of Beyer
and Sethi [8], who considered the single-stage fixed ordering cost model with Markovian
demands and showed that the state dependent (s, S) policy is optimal in infinite horizon
problem under average cost criterion. To generalize the results to assembly systems with no
fixed ordering cost; one can follow Rosling [64], whose work will be summarized in the next
section.

Lastly, Muharremoglu and Tsitsiklis [54] extend [13] with non-order crossing stochastic
leadtimes, and show the optimality of base-stock policies in such systems considering both
finite and infinite horizon problems, and under both average cost and discounted cost crite-
rions. Their stochastic leadtime model extends [45] incorporating the same two important
features, i.e., the non-order crossing property and the independence from the current status
of other outstanding orders. In their model, just like in [45], an exogenous random variable
determines which outstanding orders are going to arrive at a given stage. However, they
additionally allow the stochastic leadtimes to depend on the state of a modulating Markov
chain, which enable dependencies between the leadtime random variables corresponding to
different stages in the system.

They note that what allows them to handle Markov-modulated demand and leadtime
model is a new approach to the uncapacitated serial inventory problem. The standard
approach is a decomposition into a series of single stage problems. Their approach instead
relies on a decomposition into a series of unit-customer pairs. Consider a single unit and
a single customer. Assume that the distribution of time until the customer arrives to the
system is known and the goal is to move the unit through the system in a way that optimizes
the holding versus backorder cost trade-off. Since only a single unit and a single customer
are present, this problem is much simpler than the original one. They show that under
the assumptions of this paper, the original problem is equivalent to a series of decoupled
single-unit single-customer problems.

This approach renders handling of several extensions to the standard model in a simple
manner possible. In particular, inductive arguments based on dynamic programming equa-
tions, which get in general quite tedious as more and more complexities are added to the
model, can be bypassed. On the contrary, they use a simple qualitative argument to establish
a monotonicity property of optimal policies for the single-unit single-customer problem. For
finite horizon problems, the optimality of echelon base stock policies is an immediate corol-
lary. The same is true for infinite horizon problems, once some required limiting arguments
are carried out.
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2.2 Different Network Structures

There has been interest in inventory literature to extend the results of [18] to different
non-serial and more complex system structures. A divergent or distribution system is defined
as one in which each installation has at most one predecessor, where as in an assembly
system each installation has at most one successor. A serial system is both a distribution
and an assembly system. In practice we also quite often meet general systems, where some
installations have multiple predecessors as well as multiple successors. Such systems are very
difficult to handle by scientific methods.

In an assembly system, a number of components acquired from outside vendors are as-
sembled, typically in several stages, into subassemblies and then, finally, into a single end
product. Assembly networks are therefore trees with the node at the root corresponding
with the single end item, the leaves corresponding with the externally acquired components,
and all other nodes with intermediate subassemblies. Assembly networks generalize serial
systems in that each installation (node) has at most one successor node but may have more
than one predecessor node. There has been no exact or approximate solution methods known
to us for the direct extension of [18] where there is a fixed cost component for the ordering
of the primary components at the leaves of the assembly network.

However, Karmakar [50] for the general system structure (multilocation inventory prob-
lem as he calls) with all proportional order, holding, and shortage costs manages to show
that the base stock policy is optimal when the starting stock levels in a period are low
enough (under optimal base stock level for that period) under the additional restriction that
all leadtimes are zero. He takes a significantly different approach, which allows him to get
very general results, in formulating the problem than the one taken in [68].

In his model there is absolutely no structure assumption on the network of the instal-
lations. Instead he defines an m-dimension activity vector zt which represents any process
that changes the stock levels such as ordering, shipment between locations or disposal. In
any period t, the stock levels at all n installations at the beginning of the period are given
by the n-vector xt. The (nxm) activity coefficient matrix At captures the impact of these
activities on the stock level. The resulting stock levels are given by yt = xt + Atzt; zt ≥ 0,
which effectively defines the feasible target stock vectors yt in period t. If the multilocation
inventory problem involves only exogenous ordering and transhipment between locations,
and if it is feasible to raise the stock level at all locations simultaneously, then the activity
coefficient matrix At can be shown to be Leontief. (An (mxn) matrix A is Leontief if its
columns have at most one positive element and there exists a nonnegative column n-vector x
for which Ax is positive.) In this case there is a base stock vector ŷ such that if the starting
stock levels are lower than ŷ, then it is optimal to raise stock levels to ŷ. The result is
extended to multiperiod case with induction.

[50] has established the characterization of the optimal policies in general multilocation
inventory problem. However, computational methods have been limited to the one-period
case or to special structures. The difficulty lies in the inseperability of the optimal cost
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functions and the stochastic transitions between periods. These factors make it difficult
to numerically compute the cost functions and the expectations of the next period value
functions. Of course if the state space were very small, discrete dynamic programming could
be used, especially for the static, infinite horizon problem. However, in many instances the
state space is quite large, since its dimension is equal to the number of locations. Karmakar
[51] presents a Lagrangian decomposition of the problem that results in an easily computable
lower bound for the problem, and a dual relaxation that gives an upper bound. He also
provides some algorithms for computing these bounds and the associated computational test
results.

Rosling [64] shows that an assembly system with linear order and assembly costs, linear
holding and shortage costs, general leadtime, can be transformed into an equivalent series
system, provided the initial stock levels satisfy some simple conditions which he calls long-
run balance. He demonstrates that optimal policies (among others) in finitely many periods
lead the system into long-run balance and keep it there under reasonable and intuitive
restrictions on the values of the holding and shortage cost coefficients. This condition is
therefore completely unrestrictive when minimizing long-run average costs over an infinite
planning horizon, although it may be an issue in discounted cost criterion particularly when
the discount factor is small. All carrying, outside order and assembly costs in the equivalent
system remain linear as do the holding costs and the backlog cost for the final product.
Hence it is optimal to employ base-stock policy at each location in each period for both
finite or infinite horizon problems.

The equivalent series problem is obtained by computing the echelon leadtimes, Mi, which
are defined as the total leadtime for item i and all its successors, for all locations. Then all
the locations are placed in a series, starting with the location assembling the end product,
in descending order of their echelon leadtimes. This ordering guarantees that, if location
i is the successor of location j then i is placed before j. Locations are now numbered
(renumbered if necessary), starting with the location assembling the end product, according
to their placement in this constructed series. Without loss of generality and for convenience,
author chooses the units in which items are measured, such that for any location a single unit
of an item is required in the assembly of its successor. Then Xs

i,t is defined as the echelon
inventory position of location i in period t ordered at most s periods ago. Then the system
is in long-run balance in period t if and only if for i = 1, 2, ..., N − 1

Xs
i,t ≤ Xs

i+1,t for s = 1, ...,Mi.

Thus, in long-run balance the inventory positions equally close to the end item increase with
i, i.e., with total leadtime.

Schmidt and Nahmias [71] considers the simplest of all assembly networks, where two
components are purchased from outside vendors, to be assembled into a single end item.
Assuming linear order and assembly costs as in [64], they characterize the optimal policy
under all possible combinations of initial component’s and end product’s stock. Under inap-
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propriately matched inventories, the optimal policy may have a tediously complex structure,
but only in the initial periods of the planning horizon.

Carlson and Yano [10] consider special cases of assembly systems in which a number
of externally purchased components are assembled in a single operation into a single end
product. Unlike [64] and [71], they address order and assembly costs with fixed (setup)
components, which amounts to a complete generalization of [18] in two echelon case. It is
assumed that the periods with assembly runs are predetermined (by some other model) while
all the remaining decisions, i.e., assembly quantities in the predetermined assembly periods,
and other epochs and quantities for the components, are determined within the model on
the basis of heuristics.

In a distribution system, a single node supplies multiple installations which in turn may
supply to other installations or to the end customer. Distribution networks are therefore
trees with the node at the root corresponding with the externally acquired components,
the leaves corresponding with the end items, and all other nodes with intermediate items.
Distribution networks generalize serial systems in that each installation (node) has at most
one predecessor node but may have more than one successor node.

The basic network structure studied in distribution systems is a two stage (i.e., one
warehouse multiple retailer) model. An important within this class of models is that between
systems where inventory is carried at the central warehouse and systems without central
inventories. The latter applies, e.g., when the warehouse does not represent a physical
location at all, but rather a centralized function. The detailed decisions decisions about
shipments to ultimate destinations do not need to be made at the time a system-wide order
is placed (with an outside supplier), but can be postponed till some time later (assuming
positive leadtime for outside orders). Even if the central warehouse does correspond to a
physical location it acts a transshipment center rather than a stocking point. Rosenfield
and Pendrock [63] refer to systems with centralized stock (i.e., there is an actual warehouse
or a transshipment center with positive leadtime for outside orders) as uncoupled and to
systems without centralized stock (i.e., there is no actual warehouse and no leadtime for
outside orders) as coupled. The economies of scale in the order costs for outside orders is an
advantage of both coupled and uncoupled systems. However the distinct advantage of the
uncoupled system the ability to postpone the allocations. This permits one to observe the
demand in the intervening periods between the period the outside order is placed and the
period it is actually received in the warehouse, and thus to make better informed allocations.
Eppen and Schrage [23] coined the phrase statistical economies of scale for this effect.

Distribution systems are generally more difficult to analyze than assembly systems. An
issue that arises in these systems is the problem of allocating the available inventory at a
higher installation to the requesting nodes. Consider for example the simplest distribution
network where there are two stages, one warehouse and two identical retailers. Assume
that we in a certain period are able to allocate to the retailers’ optimal order-up-to levels,
S∗1 = S∗2 , which are obtained from solving their problems in isolation. After this allocation
we get a large period demand at retailer 2 and no demand at all at retailer 1. This means
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that we would like to allocate up to S∗2 at retailer 2 in the next period. But this may not
be possible due to insufficient supply at the warehouse. In that case we will get unequal
inventory positions at the two retailers. However, it is rather obvious that it would be
better to distribute the inventory positions equally. This might have been possible if we
had saved some more stock at the warehouse in the preceding period, i.e., if we had not
allocated S∗1 = S∗2 to both retailers. Due to this ‘balance’ problem the decision rule that was
optimal in the serial case is now only approximate. This balance problem and the outlined
approximation method is first presented in [18]. The optimal solution of this problem requires
heavy computation. The characterization of the optimal policy even for the simplest two-
stage distribution system is still an open research question. The difficulty is due to possible
stock imbalance among retailers as pointed out in [18] and [23] and given an illustration
above. However, Federgruen and Zipkin [26] provided a lower bound on the minimum cost
of the system by allowing a free inventory position rebalance among the retailers. Under such
a relaxation, the original system reduces to a single-location system whose minimum cost can
be easily computed. This minimum cost is a lower bound on the minimum cost of the original
system. Also, some heuristic allocation policies (like myopic or cycle allocation policies)
and various approximation methods (by relaxation or restriction) have been proposed in
literature, see [26] for some approximation methods, Diks and de Kok [21] for a detailed
computational study, and Federgruen [24] for a survey on centralized models of multi-echelon
inventory systems under uncertainty including a review of various approximation methods
for distribution systems.

2.3 Computational Methods

The mathematical assumptions under which (s, S) policies are optimal or close-to-optimal
are satisfied by many practical inventory replenishment problems. Moreover, the rules of
this type are easy to implement and require no more data than other standard techniques.
However, the scientific methods for computing the optimal policy are often considered to be
prohibitively expensive in practice. That is why there has been much research on developing
optimal and heuristic methods of computing optimal (s, S) policies using as limited an
amount of demand data as possible.

Also for most part, for more realistic models with multiple items, non-serial echelons,
and nonlinear cost structure; the optimal policy structures have not been characterized and
are very complex in nature. Hence even if the optimal strategies for these systems could be
computed efficiently, the complexity of the optimal policy structure makes them unattractive
for practical purposes. The implementation and proper execution of such a complex policy
would be too expensive and difficult. This is another reason for the shift of focus towards the
identification of close-to-optimal, but not necessarily fully optimal, policies with relatively
simple structure like (s, S) policies, which are easy to compute and to implement. Also,
accurate and easily computable approximations of the total system-wide cost have been
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developed for use in design and parametric studies.
Most approximation approaches start with an exact formulation of the planning problem

as a dynamic program or a Markov decision problem. The large dimension of the associate
state and action spaces precludes, in general, exact solution of these dynamic programs. The
exact model is therefore replaced by an approximate one through the application of one or
more manipulations of the problem, like those used in large scale mathematical programming;
relaxations, restrictions, projections, cost approximations.

These distinctions are important, because the properties of an approximation depend
on the types and sequence of manipulations applied. If only relaxations are used, for ex-
ample, then the resulting approximation is a lower bound on the true optimal cost of the
problem. (We use the term relaxation in the general sense, that is any approximation of a
minimization/maximization model which results in a lower/upper bound, e.g., expansions
of the feasible set and/or replacement of the objective function by lower/upper bound func-
tions.) This fact is very helpful in assessing optimality gaps for any heuristic strategy, since
the cost of an appropriately constructed feasible strategy provides an upper bound on the
optimal cost. (As is the case with most mathematical programming approximation methods,
such as Lagrangian relaxation, the heuristic strategy is usually based on the solution of the
approximate model.) If the difference between the upper and lower bounds is small, we can
conclude both that the approximation is accurate and that the constructed policy is a good
one.

Another approach is first to restrict the policy space to a more convenient and qualita-
tively appealing class. If determination of an optimal strategy within the chosen class is still
intractable and the restriction is followed by one or more relaxations, the result is a lower
bound, not on the original problem, but on the minimum cost among all policies within the
class, so that optimality gaps may be assessed with respect to the chosen class of strategies
only.

Optimal (s, S) policies may be computed by either successive approximations using func-
tional equations, by policy iteration methods, or by Markovian methods. The approximate
methods include the method of Roberts [62] and modifications of it developed by Wagner et
al. [79] and Ehrhardt [22]; and the techniques of Porteus [58] and Freeland and Porteus [31],
which are based on the general approach of Norman and White [56]. The optimal methods
include Johnson [44], Veinott and Wagner [78], and Federgruen and Zipkin [27], which is
the first optimal method that is proven to terminate in a finite number of iterations. There
are numerous other approaches and algorithms proposed in the literature, see Porteus [59]
for comparison of 17 such methods. He found that several methods seemed to perform very
well. As he notes in his conclusion, stationary (s, S) policies are of only limited interest in
practice since the distribution of demand is time varying in most real environments. Prac-
titioners seem to favor a continuous review model and simply recompute the lot size and
reorder point on a periodic basis as new estimates of the mean and standard deviation of
the demand are made. These estimates are generally obtained using a forecasting tool such
as simple exponential smoothing.
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The algorithm presented in [27] computes an optimal (s, S) policy under standard as-
sumptions; stationary data, well-behaved one-period costs, discrete demand, full backlogging
and the long-run-average cost criterion. The overall strategy of the algorithm is policy iter-
ation, modified to exploit an embedding technique, which is related to the renewal-theoretic
approach and streamlines many of the computations. The linear systems that need to be
solved are all triangular, and hence can be solved by simple substitution. Furthermore, the
proposed technique also removes the need for truncation of the state space; so the algorithm
is truly exact. Starting with a given (s, S) policy, the algorithm evaluates a sequence of
policies, all of this form unlike standard policy iteration, and converges to an optimal one
in a finite number of iterations. The policies generated are strictly improving, but not in
the usual sense: Average costs decrease, but not necessarily strictly; cycling is precluded by
strict improvement in a certain natural lexicographic criterion. In addition, a lower bound on
the optimal cost can be computed in every iteration; the algorithm can thus be terminated
with a suboptimal policy whose cost achieves any desired level of precision.

2.4 Setup Costs for Transportation

The assumption of linear costs for distribution in [18] is criticized for not considering the
economies of scale in shipping costs. Hence Clark and Scarf [19] attempts to incorporate a
setup cost associated with the transportation of items between adjacent installations. The
main result of [18] was the decomposition of the total system value function into two (or
multiple in general) value functions, one for each isolated echelon.

This decomposition enabled a solution procedure which begins by finding the optimal
policy for the problem of the fist installation without considering the costs of the second
installation and neglecting the order capacity induced by second installation’s inventory
level. Since there was no setup cost for the transportation of items to installation 1, a base
stock policy solves this problem, where the echelon inventory position (the on-hand inventory
plus orders in transit to installation 1) is increased to Sn if it is below this critical number
and no order is placed otherwise. If the echelon inventory level in installation 2 is above Sn
then the order is filled completely; if it is below Sn then it is filled as much as possible since
the cost function of installation 1 is convex. This specifies part of the system-wide optimal
policy.

There remains the problem of determining the appropriate purchasing decisions for eche-
lon 2. If these decisions were to be made independently of their influence on the lower level,
insufficient stock would be procured. Hence the ‘natural’ echelon holding and shortage costs
for echelon 2 are augmented by an additional shortage cost function that penalizes echelon
2 for its inability to deliver the required amount of stock to the lower level. This ‘induced
penalty cost’ is the expected increment in total cost of the lower installation caused by the
shortage of items in the higher installation, which is convex and depends only on the second
stage echelon inventory level (being independent of the echelon inventory position of stage



CHAPTER 2. LITERATURE REVIEW 17

one given the echelon inventory level of stage two). An (sn, Sn) type policy, therefore, solves
the procurement problem of the second installation which is the remaining part of the system
-wide optimal policy.

This intuitive argument summarizes the procedure for the determination of optimal poli-
cies when there is no setup cost for the shipment. It is therefore appropriate to ask, still
on the intuitive level, for the part played by the assumption of no setup cost in this policy.
First of all, the lack of a setup cost was responsible for the simple description of optimal
policies at the lower level in terms of a sequence of single critical numbers, Sn. If a setup
cost in transportation were included in the problem, the optimal policy would no longer be
of this simple form. Instead, the optimal policies would be of the (sn, Sn) type with a pair
of critical numbers relevant for each period.

Is it possible, in this case, to assign an additional shortage cost to echelon 2, as a function
of the echelon inventory level of stage 2 alone? This is the crucial point in the simplification
described above, and we must see if this simplification is still possible when a setup cost is
introduced.

Now let IP1 be the echelon inventory position at stage 1 and IL2 be the echelon inventory
level at stage 2 at the beginning of period n before ordering decisions are made. Suppose
that IP1 > sn. In this case no ordering at stage 1 is required, and it might seem reasonable
to charge no additional shortage cost even if Sn > IL2. On the other hand, if IP1 ≤ sn, the
optimal policy would seem to request a shipment of size Sn − IP1 from stage 2. However, if
IL2 < Sn, it is impossible to meet this request, and it would seem reasonable to charge an
additional shortage cost. Hence we are led to the conclusion that the appropriate shortage
cost to be added when IL2 < Sn seems to depend on whether IP1 ≤ sn or IP1 > sn, and
is therefore, not a function of IL2 alone. This conclusion precludes the decomposition of
the total system cost function into separate echelon cost functions, and hence, obtaining
a simple form for the optimal system policy with a setup in transportation. In fact, the
characterization of the optimal policy structure in this case is still an open research question
today after more than 40 years of progress in multi-echelon stochastic inventory theory.

Although the conclusion is that there is no simple form optimal policy, [19] makes use of a
substantial amount of the preceding argument to propose an approximation method. Instead
of attempting to find the correct additional shortage cost, they find upper and lower bound
functions of IL2 alone. The upper bound is obtained by charging an additional shortage
cost whenever IL2 < Sn, regardless of the size of IP1. On the other hand, the lower bound
is obtained by charging an additional cost only when IL2 < sn. These upper and lower
cost functions enables a simple procedure (as in the case where there are no setup costs
in transportation), based on the calculations of functions of one variable, for bounding the
true optimal cost function. Moreover, there is a natural specific policy associated with the
computation of upper bound functions proposed in the paper, which if adopted guarantees
the cost incurred will always be less than the upper bound of the true optimal cost function.
Therefore, if the upper and lower bounds are close, as the authors claim that the computation
of several examples has suggested, then we have not only a good estimate for the true optimal
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cost, but also a simple policy whose cost is very close to the true optimal cost.
Hochstädler [41] extends this approach to a two-stage distribution system. He assumes

that all the retailers use (s, S) policies that minimize their respective cost functions ignoring
the system wide total cost. Under this assumption he provides upper and lower bounds on
the total system cost and shows that the difference between these upper and lower bounds
is less than a fixed number, which depends on the mean of period demand variables, period
holding and shortage costs.

Chen and Zheng [15] obtain lower bounds on the minimum costs of managing certain
production-distribution networks with setup costs at all stages and stochastic demands.
These networks include serial, assembly, and one-warehouse multi-retailer systems. Cost
allocation is one of the well known lower-bounding methodologies (see, e.g., [26]), novel cost
allocation schemes are proposed in [15]. For general systems, new lower bounds are generated
by combining cost allocation with “physical decomposition”. In particular, imagine that the
product consists of a number of fictitious components. Each component is supplied/produced
through a subsystem – a part of the original system – and is allocated part of the costs.
By assuming that the components can be replenished and sold separately (i.e., physical
decomposition), the original system decomposes to a number of independent systems, one
for each component. The sum of the minimum costs of these independent systems is a lower
bound on the minimum cost of the original system.

2.5 (R, nQ) Policies

Characterizing the optimal policy for the serial multi-echelon stochastic inventory prob-
lem with setup costs for transportation turns out to be extremely difficult, as [19] envisioned
correctly. It is known that the optimal policy for this problem does not have a simple struc-
ture but a very complex one. Thus, an optimal policy, even if it could be identified, would
not be easy to implement. In other words the “optimal policy” is no longer optimal or even
attractive once the managerial effort of implementation is taken into account.

Prohibitive complexity of the optimal policy in this setting brings about a shift of focus
in literature to approximate methods, performance evaluation of simple policies, and the
optimal policies when the action space is restricted. The existence of setup costs for dis-
tribution in the system suggests that replenishment of inventories should be carried out in
batches. If we ignore the setup costs but insist that every stage order in fixed quantities, then
we have a new formulation of the problem in a restricted policy space. Although the fixed
order quantities may not be a substitute for the setup costs, they can accommodate aspects
that are not captured in the setup costs, e.g., the convenience of standardized shipments.
Moreover, as we will see in this section, this reformulation makes the problem of finding an
optimal policy tractable.

The (R, nQ) policies potentially offer a simple and cost-effective approach to this problem.
An (R, nQ) policy operates as follows: whenever the inventory position at a stage is at or
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below R, order nQ units where n is the minimum integer required to increase the inventory
position above R. Q is called the base order quantity and R is called the reorder point.

In (R, nQ) multi-echelon models, almost exclusively, it is assumed that the base order
quantities at the different stages satisfy an integer-ratio constraint where the base order
quantity of an upstream stage is always a positive integer multiple of the base order quantity
of the succeeding downstream stage. This further restriction of the policy space can be
justified by the studies in deterministic counterparts where Roundy [65], [66] show that the
so-called power-of-two policies are very close to the optimal solution. Under the power-of-
two structure, the reorder quantities at all stages are restricted to be power-of-two multiples
of a base quantity. This facilitates the quantity coordination among the different stages.
The effectiveness of the power-of-two policies mainly arises from the insensitivity of the cost
function in the EOQ (Economic Order Quantity) model. In fact similar insensitivity results
hold for single-stage (R, nQ) systems. Zheng [84] provides the following bound:

C(αQ∗)

C(Q∗)
≤ 1

2
(α +

1

α
)

where C() represents the optimal cost function and Q∗ is the optimal ordering quantity.
Notice that this inequality becomes an equality for the EOQ model (see, e.g., [86]), suggesting
that the (R, nQ) model is even more robust than the EOQ model with respect to the lot
size. This result is very useful for multi-echelon, multi-location systems where quantity
coordination is a primary concern.

Two variations of (R, nQ) policy with different informational requirements have been
considered in literature. These are echelon-stock (R, nQ) policy where each stage uses an
(R, nQ) policy to control its echelon stock, and installation-stock (R, nQ) policy where each
stage uses an (R, nQ) policy to control its installation stock (i.e., its local inventory position).
Both types of policies are easy to implement. Installation-stock policies require only local
inventory information, while echelon-stock policies require centralized demand information.
The relative cost difference between the two policies is called the value of centralized demand
information, which is a fundamental issue in supply chain management.

Chen [11] is the first to study this issue under (R, nQ) policies in serial inventory systems.
A key result of this paper is that the optimal echelon reorder points can be determined
sequentially: first for stage 1, then for stage 2, and so on. This is based on an observation that
the steady-state echelon inventory position at each stage can be replicated by the steady-
state inventory position of a standard single-location point/reorder quantity (or (R, nQ))
model with a random reorder point. These random reorder points at different stages satisfy
a simple recursive equation that is also found in Clark-Scarf model [18] with base-stock
policies. Hence, the result in a nutshell is that after a proper transformation, the batch-
transfer model can be treated as a base-stock model for the purpose of determining the
optimal echelon reorder pints. However, they could not propose such an exact method for
the determination of optimal installation stock reorder points. Instead, they establish easy-
to-compute bounds and suggest that optimal reorder points can be found by a search for
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the problems without many stages. They also provide a heuristic method for computing
installation stock reorder points which they claim gives good results. They also present an
extensive numerical study on the value of centralized demand information. In a pool of 1,536
examples, it is found that the value of information has a fairly wide range with the highes
value of 9% and a mean of 1.75%. The value of information tends to increase as a result of
increases in the number of stages, the leadtimes, or the batch sizes. Interestingly, the higher
demand variability decreases the value of information, and extreme levels of customer service
(either high or low) tend to increase the value.

Because of its modest informational requirements, installation-stock policies have received
more attention particularly in multi-echelon (R,Q) policy models. An (R, nQ) policy reduces
to an (R,Q) policy when demand is for a single unit at a time in continuous-review systems.
Note that although the initial measurement of a stage’s echelon stock requires the inventory
information at every downstream stage, its update only requires the demand information at
the point of sales, which is readily available for most companies with advanced communica-
tion networks. Hence this advantage of installation-stock policy is quickly disappearing as
more and more companies are equipped with advanced information technologies.

Axsäter and Rosling [5] compare installation and echelon stock (R,Q) policies in multi-
stage inventory systems. They show that in serial systems, installation stock reorder policies
are a subset of echelon stock reorder policies and that nested echelon stock reorder policies
are a subset of installation stock reorder policies. A policy in a serial system is called nested,
if an order at an upstream stage implies that all the downstream stages have ordered at
the same time. Every installation stock policy is nested, but echelon stock policies are not
necessarily nested. The result directly implies that in a serial system any given installation
stock policy can be replaced by an equivalent (which means given any sequence of demand
quantities and any initial state, the sample path of the system state would be same under
both policies) echelon stock policy, but not the other way around. Hence, echelon stock
policies represent a larger portion of feasible policies. This makes sense intuitively since each
stage under an echelon stock policy uses inclusively more information than it would do under
an installation stock policy.

Hadley and Whithin [38] showed that the steady state distribution of the inventory posi-
tion in a single-stage system under (R, nQ) policy is uniform under some mild assumptions
on the demand distribution. Let IP (t) be the inventory position at the beginning of period
t after order placement and before demand occurrence. Thus R + 1 ≤ IP (t) ≤ R + Q. [38]
proves that if the Markov chain {IP (t)} is irreducible, then its steady state distribution is
uniform over R + 1, ..., R + Q. This Markov chain is, indeed, irreducible for most demand
distributions, e.g., any demand distribution where the one-period demand equals one with a
positive probability satisfies this. Even this mild assumption can be generalized to the case
when this Markov chain is reducible. In that case its steady state distribution is uniform
over r + ∆, r + 2∆, ..., r + q∆ where r, ∆, and q are integers with ∆ > 1, R −∆ < r ≤ R,
and q being the largest integer so that r+ q∆ ≤ R+Q. The value of r is determined by the
initial inventory position. See Chen [12] for details.
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There are two alternative assumptions on the fixed setup costs in (R, nQ) policy models.
Most of the papers that we have seen, although there are exceptions, and that have important
results assume that a fixed setup cost is incurred for each Q units ordered. Therefore, for
example, the set up cost for an order of 2Q units is 2K. The alternative assumption is that
a fixed cost is incurred for each order, independent of its size. Also a common approach in
these models, especially in multi-stage models, is to consider infinite horizon problems under
average cost criterion because the mathematical analysis is simplified by using steady state
arguments in stationary models.

Given IP (t) = y, let G(y) represent one-period expected holding and shortage cost,
which is a convex function when the holding and shortage costs are convex. If µ is the mean
of the demand then the long-run average cost of an (R, nQ) policy can be expressed as

C(R,Q) ≡ µK

Q
+

∑R+Q
y=R+1

Q

where the first term is the long-run average setup cost, and the second term is the long-run
average holding and shortage cost. This expression is jointly convex in R and Q, hence it can
be easily minimized by simple algorithmic methods. However, if the setup cost is fixed for
each order independent of its size, C(R,Q) is no longer jointly convex in decision variables
and more complex algorithms are needed to determine the optimal control parameters. See
Wagner et al. [79] for some exact and approximate methods for computing optimal (R, nQ)
policies in single-stage models.

Chen and Zheng [14] are the first to adapt the single-location (R, nQ) policy to a multi-
echelon system. They provide a recursive procedure to compute the steady state echelon
inventory levels, which can be used to evaluate the long-run average holding and backorder
costs as well as other performance measures. The procedure is based upon a key simple
observation of a relationship between the inventory status of adjacent stages in a serial sys-
tem under echelon stock (R, nQ) policy. This relationship uniquely determines the echelon
inventory position of an adjacent downstream stage given the inventory level of the adja-
cent upstream stage at any period. Carrying this relationship to steady state, they obtain
expressions for system performance measures such as average on-hand inventories all stages,
average inventories in transit, and average customer backorders. In their model they assume
fixed cost for each order independent of its size. They provide a numerical study which
suggests that the optimal echelon stock (R, nQ) policies are close to optimal in most cases.

Veinott [76] shows that the (R, nQ) policy in a single-stage inventory problem is optimal
among the set of policies in which the ordering quantities are restricted to be an integer
multiple of Q. Chen [12] extends this result to serial systems, i.e., he demonstrates that an
echelon-stock (R, nQ) policy is optimal among the policies in which order quantities at each
stage satisfy integer-ratio constraints. Both of these optimality results are for the case where
a fixed order cost is charged for every Q units. The proofs presented in these papers are
similar. Firstly, a lower bound on the one-period cost is established, and then it is shown
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that (R, nQ) policy actually achieves this bound. Notice that if we set Q = 1 for every stage
then an (R, nQ) policy becomes a base-stock policy. Hence these optimality results can be
seen as merely extensions of base-stock optimality results. Equivalently, (R, nQ) policies
can be seen as generalized base-stock policies, i.e, each stage orders every period to keep its
echelon stock within an interval of it base order quantity.

2.6 Capacity Constraints

It is well known that the inventory serves as a hedge against demand variability, and ad-
vance demand information and inventory can be interchanged. The basic reason for demand
uncertainty is leadtime of production or transportation. If replenishment were instantaneous,
there would be no need to hold inventory. But the leadtime itself is generally not modeled
in detail; rather, it is commonly represented as a fixed interval or, when it is taken to be
stochastic, independent of the rest of the model. In some settings, e.g., when the leadtime is
primarily due to transportation delays, a simple model such as this may be a fair represen-
tation of reality. But leadtimes can arise not only from external factors like transportation,
but also from congestion effects internal to the operation of a system. In particular, when
the limits on production capacity is significant, the primary delay in replenishing stock may
be due to backlogs in production created by the replenishment orders themselves, rather
than to any external mechanism. Hence, for the efficient operation of these systems, explicit
consideration of the production capacity is inevitable.

The management of an inventory under finite capacity and the mathematical analysis of
the problem are complicated by the same phenomenon: In the uncapacitated case the effect
of a large demand in some period can be corrected immediately in the next period. However
when there is a capacity constraint, several periods of full production may be required, during
which further large demands might occur, requiring still more time to return to a normal
stock level. Indeed, it is not obvious that the system is stable enough under any policy to
have a finite average cost. A necessary condition is that the production capacity must be
larger than the mean of the demand distribution. The possible buildup of backorders, just
described, in a single-stage inventory system with production capacity is reminiscent of the
behavior of a queue. Indeed, using a standard transformation, this problem can be shown
to be equivalent to a certain continuous-time queuing-control model.

Federgruen and Zipkin [29] and [30] consider the most basic single-stage inventory model
with limited production capacity for infinite horizon average cost and discounted cost cri-
teria, respectively. [30] also considers the finite horizon discounted problem. They show
that, for all the problems considered, a modified base-stock policy, characterized by a single
critical number, is optimal: Follow a base-stock policy when possible; when the prescribed
production quantity exceeds the capacity, produce to capacity. While the finite production
capacity complicates the analysis of the problem in [29], they observe that the set of feasi-
ble actions in each state is compact, which permits them to invoke results from Federgruen
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et al. [25] for denumerable-state average-cost dynamic programs. This is also the reason
why they assume discrete demand in [29] while assuming continuous demand in [30]. They
adopt a different approach, based on the limiting behavior of the sequence of finite horizon
problems, for the analysis of the problem in [30]. This is a relatively standard approach for
uncapacitated problems (see, e.g., [43]). This approach allows them to show also that the
base-stock level and optimal cost function are, respectively, the limits of their finite horizon
counterparts.

It might be reasonable to expect that if the basic capacity constrained single-stage in-
ventory model in [29] and [30] were to be extended with a fixed setup cost for production,
a modified (s, S) policy would be optimal: Follow an (s, S) policy when possible; when the
prescribed production quantity exceeds the capacity, produce to capacity. However, first
Wijngaard [81] then Shaoxiang and Lambrecht [73] gave examples of such finite horizon
problems having a more complex optimal policy. [73] also show that the optimal policy does
exhibit a systematic pattern of what they called X − Y band: When the inventory level
drops below X, order up to capacity; when the inventory level is above Y , do nothing; if the
inventory level is between X and Y , however, the ordering pattern is not defined.

Gallego and Scheller-Wolf [33] further divide the state space between the X and Y values
into two and partially characterizes the optimal policy structure in this region: In one of
these regions (between X and Y ) it is optimal for the decision maker to either order nothing,
or to bring the inventory at least up to a specified level, s′. In the other region the parameters
of the solution dictate one of the two cases hold. In the first case it is optimal to order, again
at least up to a specified level. In the second, the optimal policy is to either order the full
capacity or nothing. To facilitate their analysis, they define what they call CK-convexity,
which is very closely related to the K-convexity of Scarf [68]. In particular, it is a relaxation
of K-convexity on a real interval where K-convexity corresponds to ∞K-convexity and a
C1-convex function is also C2-convex for ∀C2 ≤ C1. They complement their findings with
a computational study, which, they believe, suggests that a still further characterization of
the optimal policy exists.

Shaoxiang [72] extends [73] to infinite horizon discounted cost criteria. It is proven that
the limiting cost function exists, and there exists stationary policies that are optimal in the
long-run. The optimal policy is not of the modified (s, S) type in general, but continues to
exhibit the X − Y band structure. (C,K)-convexity (which is different from CK-convexity
of [33], a restriction of strong CK-convexity in particular) is defined by the author, and
then this property is used to show that the length of the X − Y band is not larger than
the value of the capacity. By exploring the X − Y band structure, a linear program model
is proposed to find the optimal policy in that band. Lastly, a numerical study is presented
which indicates that the “best” modified (s, S) policy may perform poorly (more than 11%
deviation from the optimal in cost performance).

Kapuściński and Tayur [46] consider the basic single-stage, discrete time production-
inventory model where the stochastic demands follow a periodic pattern. For three cases;
finite horizon cost, discounted infinite horizon cost, and infinite horizon average cost, they
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show that a modified base-stock policy (as in e.g., [29]) with a set of critical numbers (one for
each period in the cycle). This extends the results of [49], [85] for uncapacitated, nonstation-
ary model and [29], [30] for capacity constrained, stationary model. They offer a simulation
based method using infinitesimal perturbation analysis (IPA) to compute the set of optimal
critical numbers, which completely characterize the optimal policy. They also provide an
extensive numerical study, indicating that their IPA method is robust and fast, and treating
some issues related to managing these systems.

Gallego and Hu [32] analyzed a discrete-time, single-item, single-location, periodic-review
production/inventory system with finite production capacity where the demand and sup-
ply processes are driven by two independent, discrete-time, finite-state, time-homogeneous
Markov chains. We have summarized some important papers (see, [8],[13],[54]) that used
Markov modulated demand models to capture the influence on demand by factors such as
seasonality, economic conditions, and product age. In this paper, a similar argument is
made to model the supply process. In many instances, not only is the production/inventory
capacity finite, but the system is also subject to random production yields that are influ-
enced by factors such as breakdowns, repairs, maintenance, learning, and the introduction of
new technologies. An example to motivate this assumption given in the paper is the yields
in semiconductor industry: Production yields increase as the manufacturing process is fine
tuned and drop again when new, more complex products are introduced to replace older
products.

Under the above assumptions on the demand and supply processes and some other mild
conditions, for both the finite and infinite horizon discounted cost criteria problems, they
show that, given the demand state and the yield state, the optimal producing/ordering
policy is a modified state-dependent inflated base-stock policy, which means that the optimal
production/ordering quantity for each period is decreasing with respect to the initial level
as well as the optimal order-up-to level. The term inflated base stock policy was coined by
Zipkin, (see [86] p.392). They also demonstrate that the finite horizon solution converges to
the infinite horizon solution.

There has been very little research on a multi-echelon system with limited capacity at
each echelon. Given the difficulty of finding optimal policies for general multi-echelon systems
with capacity constraints, it makes sense to restrict attention to a specific class of operating
rules. Base-stock policies are attractive because they are simple and are known to be optimal
in certain settings.

Glasserman and Tayur [35] analyze the stability of a serial multi-echelon model in which
every stage has capacity constraints and follows a modified base-stock policy (modified be-
cause of capacity constraints). When capacity limits are introduced, as mentioned earlier,
the stability of the system becomes an issue. Speaking loosely, the system is stable if, on
average, it can produce finished goods at a greater rate than they are demanded. For the
general stationary demands, they show that if the mean demand per period is smaller than
the capacity at every stage, then inventories and backlogs are stable, having a unique sta-
tionary distribution to which they converge from all initial states. Under independent and
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identically distributed demands, they show that the state of the system constitutes a Harris
ergodic Markov chain, and thus inherits the wide-sense regenerative structure of that class
of processes. While Harris recurrence ensures the existence of wide-sense regeneration times,
it does not provide a means of identifying these times. Explicit regeneration times are not
needed for convergence results, but they are useful in, for example, computing confidence
intervals for simulation estimators. Hence, under an additional mild assumption on the de-
mand distribution, they show that the system is regenerative in the classical sense (that
is inventories return to their target levels infinitely often, with probability one) and iden-
tify explicit regeneration times. Extensions to systems with random leadtimes and periodic
demands are also considered.

In their model, the state of the system is represented through echelon shortfalls, which
is defined as the amount on order that has not yet been produced because of the capacity
constraint at en echelon. In this setting, an echelon’s shortfall equals to the difference
between echelon base stock level and echelon inventory position. The similarities between
the capacity constrained inventory problems and some queuing systems were mentioned
before. Actually, the shortfall concept is adopted from queuing theory. The shortfalls satisfy
a recursive equation a similar of which arises in the study of a D/G/1 queue. The techniques
for analyzing this shortfall process are well established in queuing theory. These techniques
are used to analyze the steady state distribution of the shortfalls, which directly corresponds
to the steady state distribution of inventory levels in the system.

Mathematical models are good for simple situations and to grasp concepts. To compute
numbers for real world situations, simulation is preferred. The following study suggests a
method to get the best out of two approaches: Firstly, solve a tractable approximation of
the real system to obtain a candidate policy; then evaluate the performance of the policy
in a simulation of the real system; finally, experiment with the simulation to improve the
policy. Glasserman and Tayur [36] consider general multi-echelon inventory models in which
each stage has production capacity and operates under a modified echelon base-stock policy.
They develop simulation based methodologies for estimating sensitivities of system costs with
respect to policy parameters. These sensitivity estimates are, then, used in adjusting optimal
parameters approximated by a simplified model to complexities that can be incorporated in
a simulation.

They observe that, under a base-stock policy, inventories are continuous functions of
base-stock levels, which enables them to use IPA derivative estimates. They note that
continuity and a bound on derivatives wherever they exist are the essential conditions for
the interchange of derivative and expectation required for IPA to yield unbiased estimates.
As a result, they show that these estimates converge to the correct value for finite horizon and
infinite horizon discounted and average cost criteria. Their numerical experiments suggest
that this convergence is quick. An illustration of the whole method to a real life problem is
presented at the end.

Glasserman and Tayur [37] consider the same problem as [36], and develop a simple
approximation method for it. Objective is to find echelon base-stock levels that approxi-
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mately minimize holding and backorder costs in the system. The key step in their procedure
approximates the distribution of echelon inventory by a sum of exponential variables such
that the arrival rates of the exponential variables are chosen to match asymptotically exact
expressions. The computational requirements of this method are minimal. They also pro-
vide a numerical study, where they show that; in a test bed of 72 problems, each with five
production stages, the average relative error for the approximate method is 1.9

Parker and Kapuściński [57] consider a capacity constrained two-echelon inventory sys-
tem, where the constraining capacity (the smallest capacity) is at the lower installation.
They also limit the leadtime at the higher installation to one period while permitting gen-
eral (integer multiple of period length) leadtime leading to the lower installation. Under
these assumptions, they show that a simple modification of the echelon base-stock policy is
optimal. The policy for lower echelon is unchanged - it orders up to a specific target (subject
to the availability from the higher echelon). The policy for the higher echelon is modified.
The higher echelon orders up to a specific echelon target, taking care not to exceed a specific
installation inventory.

This result is based on a few observations. Firstly, they demonstrate that it will never be
optimal for the higher installation to hold more inventory than can be processed in a single
period by the lowest stage, which is a bottleneck. Secondly, they call the states restricted by
this property “the inventory band”, and argue that given any initial state, the system will
get in the inventory band eventually and stay in it afterwards. These are simple and intuitive
arguments, which immediately imply that a conventional echelon base-stock policy cannot
be optimal. According to the conventional policy, a huge spike of demand would generate the
same-size order at the higher installation, which may exceed the capacity constraint, thus
generating unnecessary holding costs. Then, using this band argument, they substitute the
constraints upon production by a constraint on inventory and decompose the system cost
function into echelon cost functions when the system is in the band. The resulting modified
base-stock policy differs from the conventional uncapacitated echelon base-stock policy only
in that it constrains the system to operate within the inventory band. Lastly, they extend
the analysis into Markov modulated demand and infinite horizon case under both average
and discounted cost criteria.
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Chapter 3

Make-to-Order Production

In this chapter, we introduce our base case model of a just-in time manufacturer utilizing
an outsourced logistic agreement for shipping to a retail site. We focus our attention on pe-
riodic fixed commitment contracts, which specify in advance the volume to be reserved and
the frequency to be shipped. Section 3.1 presents the model in general form. In Section 3.2
and Section 3.3, we analyze two special cases of this problem, which facilitate understand-
ing of the fundamental concepts and lay the groundwork for proving results regarding the
structure of the optimal policy function, its basic properties and a decomposition result for
the general case we analyze in Section 3.4.

3.1 The Model

In this chapter, we consider a just-in-time manufacturing firm that must ship its product
to some remote location to meet stochastic demand, wt ≥ 0, through a finite planning
horizon. At the beginning of the planning horizon, we assume that the firm is already in
possession of a transportation contract. Transportation contracts often specify in advance
the frequency and volume to be reserved by the logistics provider (Yano and Gerchak [83]).
Thus, a fixed commitment contract in a finite horizon model can be specified by its shipment
periods and its reserved capacities for these periods. We assume that the contract in hand
has n shipments at periods T1, ..., Tn with reserved capacities C1, ..., Cn respectively. When
the demand is uncertain, the transportation contract alone usually will not provide sufficient
service levels. For this reason, in our model we utilize a spot market for shipping that
provides expedited service (which is often the case in practice). At each period, an order can
be shipped immediately through expedited shipment, which costs c per unit, or it can be
delayed to utilize the contracted capacity in which case a waiting cost of p per unit applies
every period. The discount factor is denoted by α ∈ (0, 1). We assume linear production
costs with no lead time or capacities, which simplifies the production decision given the
shipping decision, as all production will immediately precede shipment in quantities equal to
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the shipping quantities. Thus, to simplify subsequent notation, we do not explicitly model
production in what follows. The decision problem is to find the optimal level of shipment
ut at each period given the number of pending orders xt. The demand distributions for
periods 0 through Tn − 1 are assumed to be mutually independent. At the end of the
contract period, Tn, pending orders in excess of the contracted capacity, Cn, are shipped via
expedited shipment service. We use the notation (x)+ to represent max(0, x) throughout
this chapter. The dynamic programming equations for this model follows.

JTn(xTn) = HTn(xTn) (P)

Jt(xt) = min
ut∈[0,xt]

{
Ht(ut) + p(xt − ut) + α E

wt

[Jt+1(xt − ut + wt)]

}
, t = 0, ..., Tn − 1,

where Ht(x) ≡

{
c(x− Ct)+, if t ∈ {T1, ..., Tn}
cx, otherwise.

In the next two sections, we will analyze two special cases of this model, which will
facilitate characterizing the optimal policy for the general case at the last section as well as
providing insight into the nature of the problem.

3.2 One Shipment without Capacity

In this section, we analyze the case where there is only one shipment period in the contract
which has infinite capacity. In other words, this is a special case of the general model, where
n = 1, T1 = T , and C1 = C =∞. The dynamic programming equations simplify as follows.

JT (xT ) = 0 (P1)

Jt(xt) = min
ut∈[0,xt]

{
cut + p(xt − ut) + α E

wt

[Jt+1(xt − ut + wt)]

}
t = 0, ..., T − 1.

The optimal policy is given by the following intuitive result, which says that it is optimal
to ship every order immediately until we get sufficiently close to the end of the contract
period, and after that it is optimal not to ship at all until the end of the contract period.

Proposition 3.2.1. (Optimal Policy of (P1)) In (P1), the optimal shipping quantity func-
tion, µt, is given by:

µt(x) =

{
x, if p1−αT−t

1−α > c;

0, otherwise
t = 0, ..., T − 1.

Proof. We will make this proof by an induction argument. At period T − 1 we have

JT−1(x) = min
u∈[0,x]

{cu+ p(x− u) + αE[JT (x− u+ w)]}
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= min
u∈[0,x]

{u(c− p)}+ px.

This implies

µT−1(x) =

{
x, if p > c;

0, otherwise.

Hence, the asserted result is satisfied for period T − 1. Now, suppose that the result holds
for t = k + 1, ..., T − 1; where k ∈ {0, ..., T − 2}. Then, at period k we have

Jk(x) = min
u∈[0,x]

{cu+ p(x− u) + αE[Jk+1(x− u+ w)]}

=


min
u∈[0,x]

{u(c− p) + αE[c(x− u+ w) + αJk+2(w)]}+ px, if p1−αT−k−1

1−α > c;

min
u∈[0,x]

{
u(c− p) +

T−k−1∑
n=1

αnp(x− u+ nE[w])

}
+ px, otherwise

=


min
u∈[0,x]

{u[(1− α)c− p]}+ αE[c(x+ w) + αJk+2(w)] + px, if p1−αT−k−1

1−α > c;

min
u∈[0,x]

{
u

(
c− p

T−k−1∑
n=0

αn
)}

+
T−k−1∑
n=0

αnp(x+ nE[w]), otherwise.

This implies

µk(x) =

{
x, if p1−αT−k

1−α > c;

0, otherwise.

Hence, the asserted result is satisfied for period k as well. This completes the induction and
the proof.

3.3 One Shipment with Capacity

In this section, we continue analyzing the case with a single shipment period in the
contract, but it now has a finite capacity. In other words, this is a special case of the general
model, where n = 1, T1 = T , and C1 = C < ∞. The dynamic programming equations
change as follows.

JT (xT ) = c(xT − C)+ (P2)

Jt(xt) = min
ut∈[0,xt]

{
cut + p(xt − ut) + α E

wt

[Jt+1(xt − ut + wt)]

}
t = 0, ..., T − 1
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Notice that if p ≥ c then µt(x) = x, or if (1−α)c ≥ p then µt(x) = 0, t = 0, ..., T − 1. Thus,
from now on we assume that p < c and (1−α)c < p to avoid trivial cases. We also naturally
assume that x0 ≥ 0.

Firstly, we present the following well known result (Heyman [40]) and provide a proof of
it for completeness. This lemma will be useful in showing the preservation of convexity for
the results that follow.

Lemma 3.3.1. (Convexity Preservation under Minimization) If X is a convex set, Y (x) is
a nonempty set for every x ∈ X, the set C = {(x, y) | x ∈ X, y ∈ Y (x)} is a convex set,
g(x, y) is a convex function on C,

f(x) = inf
y∈Y (x)

g(x, y),

and f(x) > −∞ for every x ∈ X, then f is a convex function on X.

Proof. Let x and x̄ be arbitrary elements of X. Let 0 ≤ θ ≤ 1, and let θ̄ = 1 − θ. Select
arbitrary δ > 0. By the definition of f , there must exist y ∈ Y (x) and ȳ ∈ Y (x̄) such that
g(x, y) ≤ f(x) + δ and g(x̄, ȳ) ≤ f(x̄) + δ. Then,

θf(x) + θ̄f(x̄) ≥ θg(x, y) + θ̄g(x̄, ȳ)− δ [properties of y and ȳ]

≥ g(θx+ θ̄x̄, θy + θ̄ȳ)− δ [convexity of g on C]

≥ f(θx+ θ̄x̄)− δ. [(θx+ θ̄x̄, θy + θ̄ȳ) ∈ C]

Because δ is arbitrary, the inequality must hold for δ = 0. (Otherwise, a contradiction can
be reached.)

The optimal policy is given by the following result.

Proposition 3.3.2. (Optimal Policy of (P2)) In (P2), for a given C, there is a sequence of
increasing numbers {Rt}T−1

t=0 between 0 and C such that µt(x) = (x−Rt)
+ for t = 0, ..., T −1.

Proof. Firstly, notice that x0 ≥ 0 implies xt ≥ 0 for t = 0, ..., T . Hence, we restrict the
domain of the value functions to nonnegative real numbers, that is Jt : R+ → R, t = 0, ..., T .
Let us rewrite the Bellman equation by defining a new variable y, and a new function
Gt : R→ R.

Jt(x) = min
u∈[0,x]

{cu+ p(x− u) + αE
w

[Jt+1(x− u+ w)]}

= min
y∈[0,x]

{−cy + py + αE
w

[Jt+1(y + w)]}+ cx [where y ≡ x− u]

= min
y∈[0,x]

Gt(y) + cx,

where Gt(y) ≡ (p− c)y + αE
w

[Jt+1(y + w)].
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Suppose that for some t = k ∈ {0, ..., T−1} we have (i) Jt+1(x) is convex in x; (ii) J ′t+1(x) ≥ c
if x > Rt+1, where Rt is the minimizer of Gt for t = 0, ..., T − 1, and RT ≡ C.

Now, notice that (i) implies Gt(y) is convex in y, since Jt+1(y+w) is convex in y for all w; on
the other hand (ii) implies G′t(y) > 0 when y > Rt+1, since p+αc > c. Then ∃Rt ∈ [0, Rt+1]
such that Gt(Rt) ≤ Gt(y) for all y ≥ 0. Since Gt is convex, this implies µt(x) = (x−Rt)

+.

Putting X = [0,∞), Y (x) = [0, x], g(x, y) = Gt(y) + cx, and f(x) = Jt(x) in Lemma 3.3.1,
we deduce that Jt(x) is convex in x, in other words (i) holds for t = k − 1. When x > Rt,
Jt(x) = Gt(Rt) + cx, which means (ii) holds for t = k − 1.

Since (i) and (ii) holds for k = T − 1, we can repeat this argument sequentially for k =
T − 1, T − 2, ..., 0, which completes the proof.

These Rt values can be thought as “maximum levels of pending orders reserved by the
future contracted shipments”, and the policy can be interpreted as a “ship-down-to” type
policy analogous to a base-stock policy in reverse. Here, the aim is to keep the level of pending
orders at or below the reserved levels, which is similar to a base-stock policy keeping the
inventory levels at or above the order-up-to levels.

To understand how Rt changes with C, we will make the dependence of Rt to C explicit
by defining it as a function of C for the next proposition.

Proposition 3.3.3. In (P2), Rt(C) is increasing in C, t = 0, ..., T − 1.

Proof. Firstly, let us rewrite the Bellman equation while making the dependencies on C
explicit.

Jt(x,C) = min
u∈[0,x]

{cu+ p(x− u) + αE
w

[Jt+1(x− u+ w,C)]}

= min
y∈[0,x]

{−cy + py + αE
w

[Jt+1(y + w,C)]}+ cx [where y ≡ x− u]

= min
y∈[0,x]

Gt(y, C) + cx

where Gt(y, C) ≡ (p− c)y + αE
w

[Jt+1(y + w,C)].

Next, we define

Jrt (x,C) ≡ lim
ε↓0

Jt(x+ ε, C)− Jt(x,C)

ε

and similarly,

Gr
t (x,C) ≡ lim

ε↓0

Gt(x+ ε, C)−Gt(x,C)

ε
.

Now, assume that Jrt+1(x,C) is decreasing in C for some t = k ∈ {0, ..., T − 1}. Then



CHAPTER 3. MAKE-TO-ORDER PRODUCTION 32

Gr
t (x,C) is decreasing in C by definition. This implies Rt(C) is increasing in C, since

Gt(x,C) is convex in x.

Furthermore,

Jrt (x,C) = lim
ε↓0

min
y∈[0,x+ε]

Gt(y, C)− min
y∈[0,x]

Gt(y, C)

ε
+ c

=

{
c, if Rt(C) ≤ x

c+Gr
t (x,C), otherwise.

Hence Jrt (x,C) is decreasing in C, since Gr
t (x,C) is decreasing in C.

Since JrT (x,C) is decreasing in C, we can repeat this argument sequentially for k = T −
1, T − 2, ..., 0, which completes the proof.

The next result, which gives a sufficient condition to expedite all orders, directly follows
from Proposition 3.2.1 and Proposition 3.3.3.

Corollary 3.3.4. In (P2), Rt = 0 for all t such that p1−αT−t

1−α > c is satisfied.

Proof. Notice that (P2)→ (P1) as C →∞. Hence Rt(∞) = 0 for all t such that p1−αT−t

1−α > c
by Proposition 3.2.1. But by Proposition 3.3.3, Rt = Rt(C) ≤ Rt(∞), t = 0, ..., T . This
completes the proof since Rt ≥ 0 by definition.

Proposition 3.3.5. In (P2), for all Rt(C) > 0 and δ ≥ 0; Rt(C + δ) = Rt(C) + δ,
t = 0, ..., T − 1.

Proof. First, we rewrite the Bellman equation while making the dependencies on C explicit.

Jt(x,C) = min
u∈[0,x]

{cu+ p(x− u) + αE
w

[Jt+1(x− u+ w,C)]}

= min
y∈[0,x]

{−cy + py + αE
w

[Jt+1(y + w,C)]}+ cx [where y ≡ x− u]

= min
y∈[0,x]

Gt(y, C) + cx,

where Gt(y, C) ≡ (p− c)y + αE
w

[Jt+1(y + w,C)].

Second, suppose that for some t = k ∈ {1, ..., T − 1} we have (i) Gt(y + δ, C + δ) =
Gt(y, C) + Lt(δ) for all δ ≥ 0, where Lt : R+ → R is some real valued function of δ.

Then for any Rt(C) > 0 we have

Rt(C + δ) = argmin
y∈[0,∞)

Gt(y, C + δ) [by definition]
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Figure 3.1: The shifting property of the ship-down-to levels.

= argmin
y∈[0,∞)

Gt(y − δ, C) [by (i)]

= argmin
z∈[−δ,∞)

Gt(z, C) + δ [z ≡ y − δ]

= Rt(C) + δ. [since Rt(C) > 0]

Also,

Gt−1(y + δ, C + δ) = (p− c)(y + δ) + αE
w

[Jt(y + δ + w,C + δ)]

= (p− c)y + αE
w

[
min

z∈[0,y+δ+w]
Gt(z, C + δ) + c(y + δ + w)

]
+ δ(p− c)

= (p− c)y + δ (p− (1− α)c)

+ αE
w

[
min

z∈[0,y+δ+w]
Gt(z − δ, C) + c(y + w) + Lt(δ)

]
= (p− c)y + δ (p− (1− α)c)

+ αE
w

[
min

z∈[0,y+δ+w]
Gt(z − δ, C) + c(y + w)

]
+ αLt(δ)

= (p− c)y + αE
w

[
min

x∈[0,y+w]
Gt(x,C) + c(y + w)

]
+ Lt−1(δ)
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= (p− c)y + αE
w

[Jt(y + w,C)] + Lt−1(δ)

= Gt−1(y, C) + Lt−1(δ),

where the third equality follows from (i), the fifth follows since Rt(C) > 0, and we define
Lt−1(δ) ≡ δ(p+ αc− c) + αLt(δ). Hence (i) is satisfied for t = k − 1.

To see (i) is satisfied for t = T − 1, note that

GT−1(y + δ, C + δ) = (p− c)(y + δ) + αE
w

[JT (y + δ + w,C + δ)]

= (p− c)y + αE
w

[
(y + δ + w − C + δ)+

]
+ δ(p− c)

= (p− c)y + αE
w

[
(y + w − C)+

]
+ δ(p− c)

= (p− c)y + αE
w

[JT (y + w,C)] + LT−1(δ)

= GT−1(y, C) + Lt−1(δ).

Thus we can repeat this argument sequentially for k = T − 1, T − 2, ..., 0, which completes
the proof.

3.4 Multiple shipments with capacity

In this section, we will analyze the properties of the most general case as described in
(P).

The following lemma, which gives the intuitive result that the value functions are in-
creasing in pending orders, will be needed for the next theorem.

Lemma 3.4.1. In (P), value functions, Jt(x), are increasing in x for all t.

Proof. Suppose xk ≤ xk for some k ∈ {0, ..., Tn − 1}. We will show that Jk(xk) ≤ Jk(xk)
by a coupling argument. In other words, we will argue that starting at a lower state is less
costly than starting at a higher state even if we do not necessarily behave optimally but act
like we started at the higher state.

Let πk = {µk, ..., µTn−1} be the optimal policy from period k for a given sample of (P).
Consider the policy π̃k = {µ̃k, ..., µ̃Tn−1}, where µ̃t(xt) = min[µt(xt), xt] for t = k, ..., Tn − 1.
Under π̃ it is obvious that xt ≤ xt and ut ≤ ut for t = k, ..., Tn−1, which also means xT ≤ xT .
Note that gt(x, u, wt) is increasing in x and u for all t, and JTn(x) is increasing in x. Then
we have,

Jk(xk) = Jπk (xk)

≤ J π̃k (xk)
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= E

[
Tn−1∑
t=k

gt(xt, ut, wt) + JTn(xt)

]

≤ E

[
Tn−1∑
t=k

gt(xt, ut, wt) + JTn(xt)

]
= Jπk (xk)

= Jk(xk)

as desired.

The next theorem completely characterizes the optimal policy structure of the general
problem (P) introduced earlier in this chapter.

Theorem 3.4.2. (Optimal Policy of (P)) In (P), for a given set of Cm and Tm, m = 1, ..., n,

there is a sequence of sequence of increasing nonnegative numbers
{
{Rt}Tm+1

t=Tm+1

}n−1

m=0
such that

µt(x) =


(xt −Rt)

+, if t /∈ {T1, ..., Tn};{
x, if x ≤ Ct;

Ct + (x−Rt)
+, otherwise.

otherwise,

where we define T0 ≡ −1.

Proof. Suppose that for some t = k ∈ {0, ..., Tn − 1},we have (i) Jt+1(x) is convex in x; (ii)
J ′t+1(x) ≥ c if x > Rt+1, where RTn ≡ CTn .

If t /∈ {T1, ..., Tn−1}, then the claim is satisfied for t = k, and moreover (i), (ii) hold for
t = k − 1 (see the proof of Proposition 3.3.2).

Otherwise we have

Jt(x) = min
u∈[0,x]

{c(u− Ct)+ + p(x− u) + αE
w

[Jt+1(x− u+ w)]}.

Since Jt+1(x) is increasing in x by Lemma 3.4.1, we deduce that µt(x) = x if x ≤ Ct and
µt(x) ≥ Ct if x > Ct. Then we can rewrite the term x− u in the expression above as

x− u =

{
0, if x ≤ Ct

(x− Ct)− (u− Ct), otherwise

= (x− Ct)+ − (u− Ct)+

= (x− Ct)+ − ũ

where we define ũ ≡ (u−Ct)+. Putting this back in Jt(x) while making a change of variable
to ũ, we get

Jt(x) = min
ũ∈[0,(x−Ct)+]

{cũ+ p((x− Ct)+ − ũ) + αE
w

[Jt+1((x− Ct)+ − ũ+ w)]}
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= min
y∈[0,(x−Ct)+]

{(p− c)y + αE
w

[Jt+1(y + w)]}+ c(x− Ct)+

where we make another change of variable to y ≡ (x− Ct)+ − ũ,

= min
y∈[0,(x−Ct)+]

Gt(y) + c(x− Ct)+

where Gt(y) ≡ (p− c)y + αE
w

[Jt+1(y + w)].

Now, notice that (i) implies Gt(y) is convex in y, since Jt+1(y+w) is convex for all w; on the
other hand (ii) implies G′t(y) > 0 when y > Rt+1, since p+αc > c. Then ∃R̃t ∈ [0, Rt+1] such
that Gt(R̃t) ≤ Gt(y) for all y ≥ 0. Since Gt is convex, this implies µt(x) = Ct+(x−Ct−R̃t)

+

if x > Ct. Now defining Rt ≡ Ct + R̃t, we observe that the claim is satisfied for t = k.

Putting X = [0,∞), Y (x) = [0, (x − Ct)+], g(x, y) = Gt(y) + c(x − Ct)+, and f(x) = Jt(x)
in Lemma 3.3.1, we deduce that Jt(x) is convex in x, in other words (i) holds for t = k − 1.
When x > Rt, Jt(x) = Gt(R̃t) + c(x− Ct), which means (ii) holds for t = k − 1.

We have shown that the claimed result is satisfied at t = k, and moreover (i), (ii) hold at
t = k − 1. Since (i),(ii) hold for t = Tn − 1, we can repeat this argument sequentially for
k = Tn − 1, ..., 0, which completes the proof.

In words, we say that the optimal policy is a “modified ship-down-to” type policy, where
it is ship-down-to type in periods with no scheduled shipment, and in periods with scheduled
shipment, the standing orders over the capacity of shipment is ship-down-to type.

The next result is the general case analogue of Proposition 3.3.3.

Proposition 3.4.3. In (P), Rt(C) is increasing in C for t = 0, ..., Tn − 1, where the vector
C is defined by C ≡ (C1, ..., Cn).

Proof. Suppose that Jrt+1(x,C) is decreasing in C for some t = k ∈ {0, ..., Tn − 1}, where
Jrt (x,C) is defined as in the proof of Proposition 3.3.3.

If t /∈ {T1, ..., Tn−1}, then Rt(C) is increasing in C, and moreover Jrt (x,C) is decreasing in
C (see the proof of Proposition 3.3.3).

Otherwise, proceeding as in the proof of Proposition 3.4.2 while making the dependencies
on C explicit,

Jt(x,C) = min
u∈[0,x]

{c(u− Ct)+ + p(x− u) + αE
w

[Jt+1(x− u+ w),C]}

= min
ũ∈[0,(x−Ct)+]

{cũ+ p((x− Ct)+ − ũ) + αE
w

[Jt+1((x− Ct)+ − ũ+ w,C)]}

= min
y∈[0,(x−Ct)+]

{(p− c)y + αE
w

[Jt+1(y + w,C)]}+ c(x− Ct)+

= min
y∈[0,(x−Ct)+]

Gt(y,C) + c(x− Ct)+
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where Gt(y,C) ≡ (p− c)y + αE
w

[Jt+1(y + w,C)].

Hence, Gr
t (x,C) is decreasing in C by definition. This implies Rt(C) is increasing in C, since

Gt(x,C) is convex in x.

Furthermore,

Jrt (x,C) = lim
ε↓0

min
y∈[0,(x+ε−Ct)+]

Gt(y,C)− min
y∈[0,(x−Ct)+]

Gt(y,C)

ε

+ c lim
ε↓0

(x+ ε− Ct)+ − (x− Ct)+

ε

=


0, if x < Ct

c+Gr
t (x,C), if Ct ≤ x < Rt(C)

c, otherwise.

where Rt(C) ≡ Ct+R̃t(C), and R̃t(C) is the minimizer of Gt(y,C) as before. Hence Jrt (x,C)
is decreasing in C, since Gr

t (x,C) is decreasing in C.

We have shown thatRt(C) is increasing in C, and moreover Jrt (x,C) is decreasing in C. Since
JrTn(x,C) is decreasing in C, we can repeat this argument sequentially for k = Tn − 1, ..., 0,
which completes the proof.

The next corollary follows from Proposition 3.2.1 and Proposition 3.4.3, and provides a
sufficient condition for the decomposition of the problem in time.

Corollary 3.4.4. (Decomposition of (P)) In (P), suppose that p1−αTN(t)−t

1−α > c is satisfied
for some t, where N(t) = min

j∈{1,...,n}
(j|Tj > t). Then Rt = 0 and the problem decomposes at

period TP (t), where P (t) = min
j∈{0,...,n}

(j|Tj ≤ t).

Proof. Consider problem (P) as all the capacities gets arbitrary large, or as Cm → ∞ for

m = 1, ..., n. Suppose that p1−αT (t)−t

1−α > c is satisfied for some t. Let π
T (t)−1
t ≡ {µt, ..., µT (t)−1}

be the optimal policy from period t to T (t) − 1. Obviously, π
T (t)−1
t is independent of the

capacities before period t, or Ck where Ck < t. Also observe that π
T (t)−1
t is independent of

Ck where k > T (t), since JT (t)(x) = αJT (t)+1(w) is a constant independent of the actions, or

π
T (t)−1
t . Hence finding π

T (t)−1
t is very similar to a T (t)−t period problem (P1), where JT (t)(x)

is a constant instead of 0, which does not change anything in the proof of Proposition 3.2.1.
Thus by Proposition 3.2.1, this means that if t /∈ {T1, ..., Tn−1} then Rt(∞) = 0; otherwise
R̃t(∞) = 0. Now the result follows when Cm <∞ by Proposition 3.4.3.
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Chapter 4

Make-to-Stock Production

In this chapter, we consider a similar model to the one in Chapter 3. However, this
time we let the firm keep inventory at the retail site. Thus, the firm no longer needs to
have pending orders to trigger production – it can stock up finished goods in anticipation of
future demand. In addition to this modification to the production strategy, we also look at
some other possible logistic agreement types including option contracts that provide more
flexibility, as well as extending our model with stochastic spot market price and stochastic
availability of additional capacity.

In Section 4.1, we introduce our basic periodic review model of a firm utilizing a fixed
date/fixed capacity transportation agreement for shipping to its retail site. In this model,
in each period a firm must decide how much to ship, possibly nothing, from a warehouse to
a retailer to meet demand at the retailer, utilizing a combination shipping capacity already
agreed to via a structured logistics agreement, and shipping capacity available on the spot
market. Note that since there is a cost to holding inventory at the retailer, it does not always
make sense to utilize all of the available contracted capacity, even though this capacity is
already paid for. For this setting, we characterize the optimal shipping policy.

In Section 4.2, we consider a similar setting, except that instead of fixed date/fixed
capacity agreement, the firm has a logistics agreement in which it has paid up-front for the
right (but not the obligation) to purchase shipping later at a previously-agreed-upon price (a
so-called option contract), and in Section 4.3 and Section 4.4, for similar settings we consider
two ways in which the logistics provider can provide additional capacity to the buyer beyond
that agreed to in the fixed date/fixed capacity agreement, and how the buyer should take
advantage of this additional capacity. Lastly, in Section 4.5, we model a contract which
provides flexible shipping time instead of capacity.
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4.1 Logistics Agreements with Scheduled Shipments

As in Chapter 3, we consider a discrete time finite horizon problem faced by a firm that
must ship a product product from one location (for the purposes of exposition, we identify
this as the warehouse) to some destination (the retailer) to meet stochastic demand wt ≥ 0
at the destination. We assume that this firm has a scheduled shipment agreement with a
logistics provider at the start of the horizon. These types of agreements specify in advance the
frequency and volume of shipping capacity to be provided (Yano and Gerchak [83]). Thus,
a scheduled shipment agreement in a finite horizon model can be specified by its shipment
periods and its supplied capacities in these periods. In our model we let Ct denote the amount
of capacity available for shipping at period t; hence the periods at which Ct > 0 represent the
scheduled shipment periods. Of course, since demand is uncertain, the scheduled shipments
may not provide sufficient capacity to meet the firms desired service level. For this reason, we
model a spot market for transportation that provides expedited shipping when it is needed.
At the beginning of each period, the decision maker first decides how many units of inventory
to acquire (or make) at the warehouse for a unit cost of cp. We assume that there is no lead
time for acquiring this inventory. Next, the decision maker ships inventory to the retailer
either via the capacity supplied per the scheduled shipment agreement if capacity is available,
or via expedited shipping at a unit cost of cs. Finally, the demand for that period at the
retailer is realized, and fulfilled as much as possible depending on the available inventory at
the retailer. Excess demand is backlogged, a unit of which incurs a penalty cost of p per
period, and excess inventory on hand at the retailer at the end of the period incurs a holding
cost of h per unit per period.

Since for simplicity and analytical tractability we restrict ourselves to linear acquisition
cost with no lead time or capacity restrictions, the firm has no incentive to keep inventory at
the warehouse at any positive holding cost. Thus, inventory is acquired immediately before
it is shipped, and in a quantity equal to the shipping quantity. This observation enables us
to reduce the dimensions of both the state and decision spaces for this problem from two to
one, where at the start of each period the firm must determine the optimal shipment level ut
from the warehouse to the retailer given the current inventory position xt at the retailer. In
addition, we assume that the demand distributions in all periods are mutually independent,
denote the discount factor by α ∈ (0, 1), and use the notation (x)+ to represent max(0, x)
and (x)− to represent max(0,−x) throughout the rest of this chapter.

Then, for this problem, the dynamic programming recursion for t = 1, ..., T is:

Jt(x) = min
u≥0
{cs(u− Ct)+ + cpu+ E

w
[h(x+ u− w)+ + p(x+ u− w)− + αJt+1(x+ u− w)]}.

Throughout the rest of the chapter we denote the right and left derivatives of a function
f(x), by superscripting it with letters r and l, in other words f r(x) ≡ limε↓0

f(x+ε)−f(x)
ε

and

f l(x) ≡ limε↑0
f(x+ε)−f(x)

ε
. We make the following assumptions about cost parameters and
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the terminal value function mostly to avoid trivial cases:

p > (1− α)(cp + cs) (4.1)

JT+1(x) is a convex function (4.2)

lim
x→∞

JrT+1(x) > −(h+ cp)/α (4.3)

lim
x→−∞

JrT+1(x) < −(cp + cs − p)/α. (4.4)

If assumption (4.1) does not hold then it would be never optimal to produce and ship an
item with expedited shipping until possibly the last period. If assumption (4.3) does not hold
then it would be optimal to produce infinitely many items at the last period. Conversely, if
assumption (4.4) does not hold then it would never be optimal to produce and ship an item
with expedited shipping at the last period.

As an example if the terminal value function is piecewise linear with a penalty cost of c
per unit unfulfilled order and a salvage revenue of r per unit excess inventory:

JT+1(x) = c(x)− − r(x)+,

then (4.3) implies αr < h+ cp while (4.4) implies p+αc > cp + cs, both of which are clearly
true in all but the trivial problems.

Now, we prove the following theorem, which characterizes the optimal policy for this
problem:

Theorem 4.1.1. (Optimal Policy) The optimal policy at each period is characterized by two
critical levels st, St such that st ≤ St and

µt(x) =


0, if St ≤ x

St − x, if St − Ct ≤ x ≤ St

Ct, if st − Ct ≤ x ≤ St − Ct
st − x, if x ≤ st − Ct.

Proof. Firstly we define y ≡ x+ u, the order up to quantity, and rewrite the DP recursion.

Jt(x) = min
y≥x
{cs(y − x− Ct)+ + cpy + E

w
[h(y − w)+ + p(y − w)− + αJt+1(y − w)]} − cpx

= min
y≥x
{cs(y − x− Ct)+ +Gt(y)} − cpx,

where we define Gt(y) ≡ cpy + E
w

[h(y − w)+ + p(y − w)− + αJt+1(y − w)].

Let us assume (4.2),(4.3), and (4.4) hold for Jt+1(x), then these imply

(i) Gt(x) is convex (since E
w

[g(x− w)] is convex if g(x) is convex),
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(ii) lim
y→∞

Gt(x) = ∞ (since lim
y→∞

Gr
t (x) = cp + h + αJrt+1(x) > 0, i.e. the right tail of the

integrand is strictly positive),

(iii) lim
y→−∞

Gt(x) + csy = ∞ (since lim
y→∞

Gr
t (x) = cp − p + αJrt+1(x) < cs, i.e. the left tail of

the integrand is strictly negative),

respectively. Hence, some minimizers st and St defined as follows:

st ∈ argmin
y∈R

{Gt(y) + csy} ,

St ∈ argmin
y∈R

Gt(y)

exist. Furthermore st ≤ St, since

Gt(st) + csst ≤ Gt(St) + csSt ≤ Gt(st) + csSt,

where the first inequality follows from the definition of st, the second inequality follows from
the definition of St, and the result follows since cs > 0. Now we rewrite the value function
as a minimum of two functions and use the convexity of Gt(y) and the definitions of st,St to
get the following:

Jt(x) = min
y≥x
{ min
x≤y≤x+Ct

Gt(y), min
y≥x+Ct

{csy +Gt(y)} − cs(x+ Ct)} − cpx

= −cpx+


min{Gt(x), Gt(x+ Ct)}, if St ≤ x

min{Gt(St), Gt(x+ Ct)}, if St − Ct ≤ x ≤ St

min{Gt(x+ Ct), Gt(x+ Ct)}, if st − Ct ≤ x ≤ St − Ct
min{Gt(x+ Ct), Gt(st) + cs(st − x− Ct)}, if x ≤ st − Ct

= −cpx+


Gt(x), if St ≤ x

Gt(St), if St − Ct ≤ x ≤ St

Gt(x+ Ct), if st − Ct ≤ x ≤ St − Ct
Gt(st) + cs(st − x− Ct), if x ≤ st − Ct.

This shows that µt(x) is indeed the optimal policy function for period t.
Now to use Lemma 3.3.1, let X = R, Y (x) = {y ∈ R | y ≥ x}, C = {(x, y) | x ∈ X, y ∈
Y (x)}, g(x, y) = cs(y − x− Ct)+ +Gt(y)− cpx. Then

Jt(x) = inf
y∈Y (x)

g(x, y),

and also X, C are convex sets; for every x ∈ X, Y (x) is a nonempty set, Jt(x) > −∞; g(x, y)
is a convex function on C; thus Jt(x) is a convex function on R.
Furthermore,

lim
x→∞

Jrt (x) = −cp + lim
x→∞

Gr
t (x),

[
since lim

x→∞
Jt(x) = −cpx+ lim

x→∞
Gt(x)

]
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= −cp + cp + h+ α lim
x→∞

Jrt+1(x),
[
by definition of Gt(x)

]
> h− h− cp,

[
by (4.3)

]
> −(h+ cp)/α,

and

lim
x→−∞

Jrt (x) = −cp − cs,
[
since lim

x→−∞
Jt(x) = −cpx+Gt(st) + cs(st − x− Ct)

]
< −(cp + cs − p)/α,

[
by (4.1)

]
.

respectively. Hence (4.2),(4.3), and (4.4) hold for Jt(x) as well. Then we can repeat this
argument sequentially for t = T, T − 1, ..., 1, which completes the proof.

In other words, when inventory level at the retailer is above the higher of the two critical
levels, St, do nothing. When inventory level at the retailer is below St but close enough
so that there is sufficient scheduled shipment capacity Ct to raise the inventory level to St,
purchase and ship enough from the warehouse to do so. When inventory level is low enough
that Ct isn’t sufficient capacity to raise the inventory level to St at the retailer, but there is
enough to raise the inventory level to or above the lower critical value, st use all Ct units
of scheduled capacity. Finally, when the inventory level at the retailer is so low that even
using the entire scheduled capacity would not raise the inventory level to st, use all of the
scheduled capacity plus some expedited capacity to raise the inventory level at the retailer
to st.

In the following result we show that increasing the scheduled shipment capacity for some
period k, while keeping everything else constant, results in a decrease in all the critical levels
up to period k.

Proposition 4.1.2. Both st and St are decreasing with Ck for any t < k.

Proof. Firstly, we will show that the right derivative of the value function is increasing with
the reserved capacity level at that period. Remember that the value functions are continuous
and hence both Jt(x) and Gt(x) must have their right derivative defined in their domain.

As before we will denote the right derivative of these functions by Jrt (x) = limε↓0
Jt(x+ε)−Jt(x)

ε

and similarly by Gr
t (x) = limε↓0

Gt(x+ε)−Gt(x)
ε

.
We have the following by Theorem 4.1.1:

Jt(x) = −cpx+


Gt(x), if St ≤ x

Gt(St), if St − Ct ≤ x ≤ St

Gt(x+ Ct), if st − Ct ≤ x ≤ St − Ct
Gt(st) + cs(st − x− Ct), if x ≤ st − Ct
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and hence

Jrt−1(x) = −cp +


Gr
t (x), if St ≤ x

0, if St − Ct ≤ x < St

Gr
t (x+ Ct), if st − Ct ≤ x < St − Ct
−cs, if x < st − Ct.

Notice that for some x, an increase in Ct either does not change the partition x belongs
to or it shifts x to a higher partition (i.e. a partition to the right of the original). Notice
that Gr

t (x) is independent of Ct by definition as of course are the constants cp, 0 and −cs.
Gr
t (x+Ct) on the other hand is increasing with Ct since Gt(x) is convex. Thus we have shown

that the partial function Jrt (x) is increasing with Ct within each partition in its definition.
Furthermore, Gr

t (x) ≥ 0 when St ≤ x and −cs ≤ Gr
t (x+Ct) ≤ 0 when st−Ct ≤ x < St−Ct,

since Gt(x) is convex, St is a minimizer of Gt(x), and st is a minimizer of Gt(x) + csx. Thus
we have also shown that for some x, if an increase in Ct causes x to shift to another partition,
Jrt (x) would increase in that case as well. Hence we conclude that Jrt (x) is increasing with
Ct.

Secondly, since Jrt (x) is increasing with Ct, so is Gr
t−1(x) by just the definition of Gt−1(x).

Then this implies that st−1 and St−1 are decreasing with Ct, since they are some minimizers
for the convex functions Gt−1(x) + csx and Gt−1(x) respectively.

Lastly, since Gr
t−1(x) is increasing with Ct so is Jrt−1(x), since we have again the following

from Theorem 4.1.1:

Jrt (x) = −cp +


Gr
t−1(x), if St−1 ≤ x

0, if St−1 − Ct−1 ≤ x < St−1

Gr
t−1(x+ Ct−1), if st−1 − Ct−1 ≤ x < St−1 − Ct−1

−cs, if x < st−1 − Ct−1.

Then we can clearly repeat this argument recursively for all k < t, e.g. since Jrt−1(x) is
increasing with Ct, so is Gr

t−2(x), which implies that st−2 and St−2 are decreasing with Ct
and so on.

Intuitively, we can see why this is true by noting that if all the reserved capacity levels in
future periods are zero, then we would be primarily concerned with balancing the holding cost
of excess inventory versus the penalty cost of shortage. However if there are future periods
with positive reserved capacity, then we would like to utilize these contracted shipments as
much as possible in addition to balancing the holding and penalty costs, as those reserved
capacity levels essentially represent free shipment opportunities. Hence an increase in the
reserved shipment capacity level of a future period makes us less willing to produce and ship
today, which results in lower inventory levels.
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In practice, it is usually the case that the contracted shipments are scheduled periodically,
which means that there is a pattern of zero scheduled shipment capacity periods followed
by a positive one. In the next result we show that at periods with no scheduled shipment
the optimal policy reduces to an order-up-to policy, and we also show that these order-up-to
levels are decreasing.

Proposition 4.1.3. Suppose that Ck > 0 and Ct = 0 for k < t ≤ l. Then at periods
k + 1, . . . , l − 1, l the optimal policy reduces to an order-up-to policy. Let st denote the
order-up-to level at period t, where k < t ≤ l. Then the following holds:

sl ≤ · · · ≤ sk−1 ≤ sk.

Proof. Notice that if Ct = 0, then the expression for the value function at period t reduces
to the following:

Jt(x) = min
y≥x
{csy +Gt(y)} − (cs + cp)x,

where Gt(y) ≡ cpy + E
w

[h(y − w)+ + p(y − w)− + αJt+1(y − w)] as before.

We have already shown in the proof of Theorem 4.1.1 that Gt(y) is convex and that there
exists a minimizer, st, of csy +Gt(y). Hence, the optimal policy at period t given Ct = 0, is
order-up-to st, and thus the value function for this period can be written as follows:

Jt(x) = −cpx+

{
Gt(x), if st ≤ x

Gt(st) + cs(st − x), if x ≤ st

Let us denote the left derivative of Jt(x) and Gt(x) by J lt(x) = limε↑0
Jt(x+ε)−Jt(x)

ε
and

Gl
t(x) = limε↑0

Gt(x+ε)−Gt(x)
ε

respectively.
Notice that if Ct = 0 then J lt(x) = −cs − cp for x ≤ st, and also that J lt(x) ≥ −cs − cp

regardless of the value of Ct. The latter claim can easily be verified by noting that the left
derivative of a convex function is increasing.

Now, for k ≤ t ≤ l, let s̃t ≡ max{s : css + Gt(s) ≤ csy + Gt(y)} and let Fw(y) be the
cummulative probability function for the demand distribution. Then

cs +Gl
t(s̃t+1) = cs + cp + (h+ p)Fw(s̃t+1)− p+ αE

w
[J lt+1(s̃t+1 − w)]

≤ cs + cp + (h+ p)Fw(s̃t+1)− p+ αE
w

[J lt+2(s̃t+1 − w)]

= cs +Gl
t+1(s̃t+1)

≤ 0,

where the inequality follows since J lt+1(s̃t+1 − w) = −cs − cp ≤ J lt+2(s̃t+1 − w). This implies
that st+1 ≤ s̃t+1 ≤ st since Gt(y) is convex. Then using this inequlatiy recursively for
k ≤ t < l gives us the result.
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While Proposition 4.1.2 tells us that an increase in the reserved shipment capacity level
of a future period makes us to produce less today, Proposition 4.1.3 tells us that we would
also be less willing to produce and ship as we get closer to a period with reserved capacity
shipment, since we would again like to utilize that reserved capacity as much as possible.

4.2 Logistics Agreements with Options and Stochastic

Spot Market Price

In Section 4.1, we considered scheduled shipment transportation agreements, which do
not leave the firm much flexibility. Indeed, these contracts concentrate demand-related
shipping risk with the firm, rather than with the logistics provider. One way to mitigate this
risk is to incorporate options into the logistics agreement. Options give the firm the right to
use the logistics provider’s service at a certain predetermined rate if it opts to do so.

To extend our model to include options, we first introduce some notation. Suppose
that at any period t, the rate of using the transportation service specified in the option
agreement is set to co with a reserved capacity level of Ct. Let us adopt the shorthand
notation gt+1(x + u) ≡ E

w
[h(x + u − w)+ + p(x + u − w)− + αJt+1(x + u − w)] to simplify

notational exposition. Then the dynamic programming recursion becomes:

Jt(x) = min
u≥0
{co min{u,Ct}+ cs(u− Ct)+ + cpu+ gt+1(x+ u)}

= min
u≥0
{(cs − co)(u− Ct)+ + (cp + co)u+ gt+1(x+ u)}

Notice that this recursion has exactly the same form with the model we analyzed previously
in Section 4.1, where cs and cp are replaced with cs−co and cp+co respectively. Consequently,
that analysis directly extends to the case with option contracts.

However, this equivalence assumes that the spot market price for expedited shipping is
stationary. This was not a point of concern for the scheduled shipments since the marginal
cost of using the reserved capacity in that case is zero, which is always cheaper than the spot
market price. However, in the case of option agreements, this may not be true. Furthermore,
variations in the spot market price may induce a considerable risk for the manufacturer,
which may want to utilize option contracts to hedge against this risk.

For these reasons we extend our main theorem to the case where the spot market price is
stochastic. More specifically, we assume that the spot market price for expedited shipping,
ct, at each period becomes known to the manufacturer only at the beginning of that period
and may depend on all the relevant information gathered up to that point, which we will
denote by Ft. In particular notice that this information set is a filter, Ft ⊂ Ft+1, and ct ∈ Ft.
In this case we define:

gt+1(x+ u) ≡ E
w,ct+1

[h(x+ u− w)+ + p(x+ u− w)− + αJt+1(x+ u− w,Ft+1) | Ft]



CHAPTER 4. MAKE-TO-STOCK PRODUCTION 46

Then dynamic programming recursion becomes:

Jt(x,Ft) = min
u≥0
{min{co, ct}min{u,Ct}+ ct(u− Ct)+ + cpu+ gt+1(x+ u)}

= min
u≥0
{(ct −min{co, ct})(u− Ct)+ + (cp + min{co, ct})u+ gt+1(x+ u)}

Once again notice that this recursion has a very similar form to the model analyzed previ-
ously in Section 4.1, where cs and cp are replaced with ct −min{co, ct} and cp + min{co, ct}
respectively. The primary substantial difference, however, is that the cost parameters are no
longer stationary or deterministic. However a parallel line of reasoning can be used to prove
that the structure of the optimal policy is essentially the same, except that the critical levels
at any period depend on the realization of the spot market price at that period.

Firstly, we adopt the following shorthand notation to reduce the amount of clutter in the
formulations:

cs,t ≡ ct −min{co, ct}
cp,t ≡ cp + min{co, ct}

Secondly, for notational simplicity, we assume that the spot market price is a Markov
process. This assumption also ensures the dimension of the state space does not increase
with time. However we note that our results extend directly to the case where Ft is a general
information set as described above.

Thirdly, as before, to avoid trivial cases we make the following assumptions, which cor-
respond to the assumptions (4.1),(4.2),(4.3), and (4.4) of Section 4.1 respectively:

p > (1− α)(cp,t + ct), with probability 1. (4.1′)

JT+1(x, cT+1) is convex in x for any cT+1. (4.2′)

lim
x→∞

JrT+1(x, cT+1) > −(h+ cp,t + co)/α, with probability 1. (4.3′)

lim
x→−∞

JrT+1(x, cT+1) < −(cp,t + cs,t − p)/α with probability 1. (4.4′)

We, now, prove the following result, which is an extends Theorem 4.1.1 to the case of
logistics agreements with options in the presence of stochastic spot market prices:

Theorem 4.2.1. (Optimal Policy) At each period t, for any realization of the spot market
price for expedited shipment, ct, the optimal policy is characterized by two critical levels
st(ct), St(ct) such that st(ct) ≤ S(ct) and

µt(x, ct) =


0, if St(ct) ≤ x

St(ct)− x, if St(ct)− Ct ≤ x ≤ St(ct)

Ct, if st(ct)− Ct ≤ x ≤ St(ct)− Ct
st(ct)− x, if x ≤ st(ct)− Ct.
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Proof. Firstly we define y ≡ x+ u, the order up to quantity, and rewrite the DP recursion.

Jt(x, ct) = min
y≥x

{
cs,t(y − x− Ct)+ + cp,ty

+ E
w,ct+1

[h(y − w)+ + p(y − w)− + αJt+1(y − w, ct+1)]
}
− cp,tx

= min
y≥x
{cs,t(y − x− Ct)+ +Gt(y, ct)} − cp,tx,

where we define Gt(y, ct) ≡ cp,ty + E
w,ct+1

[h(y − w)+ + p(y − w)− + αJt+1(y − w, ct+1)].

Let us assume (4.2′),(4.3′), and (4.4′) hold for Jt+1(x, ct+1), then these imply (i) Gt(x, ct) is
convex in x, (ii) limy→∞Gt(x, ct) =∞, and (iii) limy→−∞Gt(x, ct) + cs,ty =∞ respectively.
Hence, the minimizers st(ct) and St(ct) defined as follows:

st(ct) ≡ argmin
y∈R

Gt(y, ct) + cs,ty

St(ct) ≡ argmin
y∈R

Gt(y, ct)

exist. Furthermore st(ct) ≤ St(ct), since

Gt(st(ct), ct) + cs,tst(ct) ≤ Gt(St(ct), ct) + cs(ct)St(ct) ≤ Gt(st(ct), ct) + cs(ct)St(ct).

Now we rewrite the value function as a minimum of two functions and use the convexity of
Gt(y, ct) in y and the definitions of st(ct),St(ct) to get the following:

Jt(x, ct) = min
y≥x
{ min
x≤y≤x+Ct

Gt(y, ct), min
y≥x+Ct

{cs,ty +Gt(y, ct)} − cs,t(x+ Ct)} − cp,tx

= −cp,tx

+


min{Gt(x, ct), Gt(x+ Ct, ct)}, if St(ct) ≤ x

min{Gt(St(ct), ct), Gt(x+ Ct, ct)}, if St(ct)− Ct ≤ x ≤ St(ct)

min{Gt(x+ Ct, ct), Gt(x+ Ct, ct)}, if st(ct)− Ct ≤ x ≤ St(ct)− Ct
min{Gt(x+ Ct, ct), Gt(st(ct), ct) + cs(st(ct)− x− Ct)}, if x ≤ st(ct)− Ct

= −cpx+


Gt(x, ct), if St(ct) ≤ x

Gt(St(ct), ct), if St(ct)− Ct ≤ x ≤ St(ct)

Gt(x+ Ct, ct), if st(ct)− Ct ≤ x ≤ St(ct)− Ct
Gt(st(ct), ct) + cs(st(ct)− x− Ct), if x ≤ st(ct)− Ct.

This shows that µt(x, ct) is indeed the optimal policy function for period t.
Setting X = R, Y (x) = {y ∈ R | y ≥ x}, g(x, y, ct) = cs,t(y − x− Ct)+ +Gt(y, ct) and using
Lemma 3.3.1 we deduce that Jt(x, ct) is convex in x. Furthermore (4.1′) implies

lim
x→∞

Jrt (x, ct) = −cp,t + h+ cp,t + α lim
x→∞

Jrt+1(x, ct+1) > −(h+ cp,t)/α, and
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lim
x→−∞

Jrt (x, ct) = −cp,t − cs,t < −(cp,t + cs,t − p)/α

respectively. Hence (4.2′),(4.3′), and (4.4′) hold for Jt(x, ct) as well. Then we can repeat this
argument sequentially for t = T, T − 1, ..., 1, which completes the proof.

In other words, this policy is similar to the policy in Theorem 4.1.1, except that all
parameters are functions of the spot market price (and policy parameter levels are impacted
by the positive marginal cost of utilizing both contracted and spot market shipping).

4.3 Multi-level Option Agreements

More sophisticated option agreements can include several different option levels and rates.
That is, in addition to the primary capacity option level and rate, the logistics provider may
agree to provide the option to purchase additional capacity at a different (higher) rate.

We model this by extending the model in the previous section by assuming that in any
period t, in addition to reserved capacity level Ct available at rate co, the logistics provider
will provide up to 100γt% of the reserved capacity at a rate of co + ce.

In this case, the new dynamic programming equations are:

Jt(x) = min
u≥0

{
co min{u,Ct}+ (co + ce) min{(u− Ct)+, γtCt}

+ cs(u− (1 + γt)Ct)
+ + cpu+ gt+1(x+ u)

}
= min

u≥0

{
(cs − co − ce)(u− (1 + γt)Ct)

+ + ce(u− Ct)+ + (cp + co)u+ gt+1(x+ u)
}

Let us denote (1 + γt)Ct by C̄t to simplify notation.
To avoid trivial cases we make the following assumptions, which correspond to the as-

sumptions (4.1),(4.2),(4.3), and (4.4) of Section 4.1 respectively:

p > (1− α)(cp + cs) (4.1′′)

JT+1(x) is a convex function (4.2′′)

lim
x→∞

JrT+1(x) > −(h+ cp + co)/α (4.3′′)

lim
x→−∞

JrT+1(x) < −(cp + cs − p)/α. (4.4′′)

Theorem 4.3.1. (Optimal Policy) The optimal policy at each period is characterized by
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three critical levels st,s̄t,St such that st ≤ s̄t ≤ St and

µt(x) =



0, if St ≤ x

St − x, if St − Ct ≤ x ≤ St

Ct, if s̄t − Ct ≤ x ≤ St − Ct
s̄t − x, if s̄t − C̄t ≤ x ≤ s̄t − Ct
C̄t, if st − C̄t ≤ x ≤ s̄t − C̄t
st − x, if x ≤ st − C̄t.

Proof. Firstly we define y ≡ x+ u, the order up to quantity, and rewrite the DP recursion.

Jt(x) = min
y≥x
{(cs − co − ce)(y − x− C̄t)+ + ce(y − x− Ct)+ + (cp + co)y + gt+1(y)}

− (cp + co)x

= min
y≥x
{(cs − co − ce)(y − x− C̄t)+ + ce(y − x− Ct)+ +Gt(y)} − (cp + co)x,

where we define Gt(y) ≡ (cp + co)y + gt+1(y).
Let us assume (4.2′′),(4.3′′), and (4.4′′) hold for Jt+1(x), then these imply (i) Gt(x) is convex,
(ii) limy→∞Gt(x) = ∞, and (iii) limy→−∞Gt(x) + (cs − co)y = ∞ respectively. Hence, the
minimizers st, s̄t and St defined as follows:

st ≡ argmin
y∈R

Gt(y) + (cs − co)y

s̄t ≡ argmin
y∈R

Gt(y) + cey

St ≡ argmin
y∈R

Gt(y)

exist. Furthermore st ≤ s̄t ≤ St, since

Gt(st) + (cs − co)st ≤ Gt(s̄t) + (cs − co)s̄t ≤ Gt(st) + csst − cost

and
Gt(s̄t) + ces̄t ≤ Gt(St) + ceSt ≤ Gt(s̄t) + ceSt.

Now we rewrite the value function as a minimum of three functions and use the convexity
of Gt(y) and the definitions of st,s̄t,St to get the following:

Jt(x) + (cp + co)x = min{ min
x≤y≤x+Ct

Gt(y), min
x+Ct≤y≤x+C̄t

{Gt(y) + cey} − ce(x+ Ct),

min
y≥x+C̄t

{Gt(y) + (cs − co)y} − (cs − co)(x+ C̄t) + ce(C̄t − Ct)}



CHAPTER 4. MAKE-TO-STOCK PRODUCTION 50

=



min{Gt(x), Gt(x+ Ct), Gt(x+ C̄t) + ce(C̄t − Ct)},
min{Gt(St), Gt(x+ Ct), Gt(x+ C̄t) + ce(C̄t − Ct)},
min{Gt(x+ Ct), Gt(x+ Ct), Gt(x+ C̄t) + ce(C̄t − Ct)},
min{Gt(x+ Ct), Gt(s̄t) + ce(s̄t − x+ Ct), Gt(x+ C̄t) + ce(C̄t − Ct)},
min{Gt(x+ Ct), Gt(x+ C̄t) + ce(C̄t − Ct), Gt(x+ C̄t) + ce(C̄t − Ct)},
min{Gt(x+ Ct), Gt(x+ C̄t) + ce(C̄t − Ct), Gt(st) + (cs − co)st − ce(C̄t − Ct)},

=



Gt(x), if St ≤ x

Gt(St), if St − Ct ≤ x ≤ St

Gt(x+ Ct), if s̄t − Ct ≤ x ≤ St − Ct
Gt(s̄t) + ce(s̄t − x− Ct), if s̄t − C̄t ≤ x ≤ s̄t − Ct
Gt(x+ C̄t) + ce(C̄t − Ct), if st − C̄t ≤ x ≤ s̄t − C̄t
Gt(st) + (cs − co)(st − x− C̄t)− ce(C̄t − Ct), if x ≤ st − C̄t.

This shows that µt(x) is indeed the optimal policy function for period t.
Setting X = R, Y (x) = {y ∈ R | y ≥ x}, g(x, y) = (cs − co − ce)(y − x− C̄t)+ + ce(y − x−
Ct)

+ + Gt(y) and using Lemma 3.3.1 we deduce that Jt(x) is convex. Furthermore (4.1′′)
implies

lim
x→∞

Jrt (x) = −cp − co + h+ cp + co + α lim
x→∞

Jrt+1(x) > −(h+ cp + co)/α, and

lim
x→−∞

Jrt (x) = −cs + co + ce − ce − cp − co < −(cp + cs − p)/α

respectively. Hence (4.2′′),(4.3′′), and (4.4′′) hold for Jt(x) as well. Then we can repeat this
argument sequentially for t = T, T − 1, ..., 1, which completes the proof.

This policy generalizes the policy of the two previous models by adding a third critical
value. In other words, the optimal policy is characterized by three time-dependent critical
values s̄t, st and St such that either some or all of the cheaper reserved capacity, or all of the
cheaper reserved capacity and some of the more expensive reserved capacity, or all of the
reserved capacity, or all of the reserved capacity plus the spot market is used to ship goods
to the retailer, depending on the starting inventory at the retailer.

4.4 Stochastic Availability of Additional Capacity

In practice, the firm and its logistics provider may not agree to a formal option agreement,
but may instead agree to scheduled shipments as in Section 4.1, with the added provision
that if the if the logistics provider is left with some unused capacity in any period, she
may promise to provide this additional capacity to the firm at some below-spot-market
rate if necessary. This practice helps the firm more easily handle peaks in demand without
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committing to excessive capacity levels, and also helps the logistics provider to better utilize
capacity while maintaining a good relationship with its customers.

To model this agreement let us assume that at each period t, in addition to the reserved
capacity level Ct, the buyer will have access to At units of unused capacity by the logistics
provider at the rate ca. Here we assume At is a nonnegative independently distributed
random variable, the value of which becomes known to the buyer at the beginning of period
t.

In this case we define:

gt+1(x+ u) ≡ E
w,At+1

[
h(x+ u− w)+ + p(x+ u− w)− + αJt+1(x+ u− w,At+1)

]
Then dynamic programming recursion becomes:

Jt(x,At) = min
u≥0
{ca min{(u− Ct)+, At}+ cs(u− Ct − At)+ + cpu+ gt+1(x+ u)}

= min
u≥0
{ca(u− Ct)+ + (cs − ca)(u− Ct − At)+ + cpu+ gt+1(x+ u)}

Notice that the last equality resembles the recursion in Section 4.3. Indeed under similar
conditions as in Section 4.3 and if we denote Ct +At by C̄t, we can show that Theorem 4.3.1
applies to this case as well.

More formally if the following holds:

p > (1− α)(cp + cs) (4.1′′′)

JT+1(x,AT+1) is convex in x with probability 1 (4.2′′′)

lim
x→∞

JrT+1(x,AT+1) > −(h+ cp)/α,with probability 1 (4.3′′′)

lim
x→−∞

JrT+1(x,AT+1) < −(cp + cs − p)/α with probability 1 (4.4′′′)

Then the optimal policy function can be described by Theorem 4.3.1, where C̄t ≡ Ct+At.
For completeness we present the formal statement of the theorem and its proof below.

Theorem 4.4.1. (Optimal Policy) The optimal policy at each period is characterized by
three critical levels st,s̄t,St such that st ≤ s̄t ≤ St and

µt(x) =



0, if St ≤ x

St − x, if St − Ct ≤ x ≤ St

Ct, if s̄t − Ct ≤ x ≤ St − Ct
s̄t − x, if s̄t − C̄t ≤ x ≤ s̄t − Ct
C̄t, if st − C̄t ≤ x ≤ s̄t − C̄t
st − x, if x ≤ st − C̄t.
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Proof. Firstly we define y ≡ x+ u, the order up to quantity, and rewrite the DP recursion.

Jt(x,At) = min
y≥x
{(cs − ca)(y − x− C̄t)+ + ca(y − x− Ct)+ + cpy + gt+1(y)} − cpx

= min
y≥x
{(cs − ca)(y − x− C̄t)+ + ca(y − x− Ct)+ +Gt(y)} − cpx,

where we define Gt(y) ≡ cpy + gt+1(y).
Let us assume (4.2′′′),(4.3′′′), and (4.4′′′) hold for Jt+1(x), then these imply (i) Gt(x) is
convex, (ii) limy→∞Gt(x) =∞, and (iii) limy→−∞Gt(x) + csy =∞ respectively. Hence, the
minimizers st, s̄t and St defined as follows:

st ≡ argmin
y∈R

Gt(y) + csy

s̄t ≡ argmin
y∈R

Gt(y) + cay

St ≡ argmin
y∈R

Gt(y)

exist. Furthermore st ≤ s̄t ≤ St, since

Gt(st) + csst ≤ Gt(s̄t) + css̄t ≤ Gt(st) + csstst

and
Gt(s̄t) + cas̄t ≤ Gt(St) + caSt ≤ Gt(s̄t) + caSt.

Now we rewrite the value function as a minimum of three functions and use the convexity
of Gt(y) and the definitions of st,s̄t,St to get the following:

Jt(x,At) + cpx = min{ min
x≤y≤x+Ct

Gt(y), min
x+Ct≤y≤x+C̄t

{Gt(y) + cay} − ca(x+ Ct),

min
y≥x+C̄t

{Gt(y) + csy} − cs(x+ C̄t) + ca(C̄t − Ct)}

=



min{Gt(x), Gt(x+ Ct), Gt(x+ C̄t) + ca(C̄t − Ct)},
min{Gt(St), Gt(x+ Ct), Gt(x+ C̄t) + ca(C̄t − Ct)},
min{Gt(x+ Ct), Gt(x+ Ct), Gt(x+ C̄t) + ca(C̄t − Ct)},
min{Gt(x+ Ct), Gt(s̄t) + ca(s̄t − x+ Ct), Gt(x+ C̄t) + ca(C̄t − Ct)},
min{Gt(x+ Ct), Gt(x+ C̄t) + ca(C̄t − Ct), Gt(x+ C̄t) + ca(C̄t − Ct)},
min{Gt(x+ Ct), Gt(x+ C̄t) + ca(C̄t − Ct), Gt(st) + csst − ca(C̄t − Ct)},

=



Gt(x), if St ≤ x

Gt(St), if St − Ct ≤ x ≤ St

Gt(x+ Ct), if s̄t − Ct ≤ x ≤ St − Ct
Gt(s̄t) + ca(s̄t − x− Ct), if s̄t − C̄t ≤ x ≤ s̄t − Ct
Gt(x+ C̄t) + ca(C̄t − Ct), if st − C̄t ≤ x ≤ s̄t − C̄t
Gt(st) + cs(st − x− C̄t)− ca(C̄t − Ct), if x ≤ st − C̄t.
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This shows that µt(x) is indeed the optimal policy function for period t.
Setting X = R, Y (x) = {y ∈ R | y ≥ x}, g(x, y) = (cs− ca)(y−x− C̄t)+ + ca(y−x−Ct)+ +
Gt(y) and using Lemma 3.3.1 we deduce that Jt(x,At) is convex in x. Furthermore (4.1′′′)
implies

lim
x→∞

Jrt (x,At) = −cp + h+ cp + α lim
x→∞

Jrt+1(x,At) > −(h+ cp)/α, and

lim
x→−∞

Jrt (x,At) = −cs + ca − ca − cp < −(cp + cs − p)/α

Hence (4.2′′′),(4.3′′′), and (4.4′′′) hold for Jt(x) as well. Then we can repeat this argument
sequentially for t = T, T − 1, ..., 1, which completes the proof.

4.5 Logistics Agreements with Flexible Shipments

In this section we consider a different contract which gives more flexibility to the man-
ufacturer. Instead of fixed scheduled dates for shipments as in Section 4.1, this time we
assume that only the frequency of shipments, say one shipment of reserved capacity C per T
periods, is specified and the manufacturer is allowed to use this reserved capacity whenever
she wishes during those T periods. Obviously this type of contract enables the manufacturer
to use the contracted capacity more freely while making it more difficult for the contract
provider to allocate its resources efficiently.

In this model, at any period we need to keep track of whether we have used the contracted
shipment or not. Hence we augment the state space to a vector (x, y), where x represents the
inventory level at the retailer as before and y represents the number of contracted shipments
left. Let us adopt the shorthand notation L(x) ≡ h(x)+ + p(x)− to simplify notational
exposition.

The dynamic programming recursions for this model at t = 1, ..., T are:

Jt(x, 1) = min

{
min
u≥0

{
(cs + cp)u+ E

w
[L(x+ u− w) + αJt+1(x+ u− w, 1)]

}
,

min
u≥0

{
cs(u− C)+ + cpu+ E

w
[L(x+ u− w) + αJt+1(x+ u− w, 0)]

}}
and

Jt(x, 0) = min
u≥0

{
(cs + cp)u+ E

w
[L(x+ u− w) + αJt+1(x+ u− w, 0)]

}
.

Unfortunately, we have been unable to characterize the optimal policy structure for this
model so far. However, based on numerical experiments, we conjecture the following for
determining the optimal time of the shipment.
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Conjecture 4.5.1. For a given C, there is a sequence of critical numbers {St}Tt=1 between 0
and C such that if xt < St then the manufacturer does not call for the contracted shipment
at period t, else if xt ≥ St then the manufacturer calls for the contracted shipment at period
t.

Even if the conjecture above is true, we still need to specify the optimal production and
shipping function up to the period in which the shipment is called to completely characterize
the optimal policy structure. For this we conjecture the following.

Conjecture 4.5.2. (Optimal Policy) The optimal policy function is given by:

µt(x, y) =



(Pt − x)+, if y = 0
((Rt − x)+, 0), if Kt < x

(St − x, 1), if St − C ≤ x ≤ Kt

(C, 1), if st − C ≤ x ≤ St − C
(st − x, 1), if x ≤ st − C

, if y = 1.

Furthermore, st ≤ St, Kt ≤ St, Rt ≤ Pt, and st, St, Rt are decreasing while Kt is increasing
in t.
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Chapter 5

Computational Study

In this chapter, to gain managerial insights into practical real-life applications of the
logistics agreements we considered, we conduct numerical experiments to answer questions
such as the following:

• How does key optimal contract parameters for each contract, such as the capacity to be
reserved and the frequency of shipments, change with changes in demand variability?

• How does demand variance affect the value of each logistics agreement, which is mea-
sured by the difference in optimal expected operational cost of a spot market only
system and a system with access to the corresponding logistics agreement?

• In what ways do operational cost parameters such as holding cost and penalty cost
affect the value of each logistics agreement?

• How do the performance of different logistics agreements compare under different op-
erating environments?

We focus on analysis of optimal contract parameters with varying operating costs and de-
mand in Section 5.1, while comparing different logistics agreements under varying operating
environments in Section 5.2.

5.1 Optimal Contract Parameters

In this section, we explicitly specify the cost structure of a fixed commitment contract
and computationally analyze how the optimal contract parameters change with respect to
changes in the cost and demand parameters to facilitate gaining managerial insights in the
logistics outsourcing problem of the contract buyer.
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We use the following contract cost structure in our computational experiments, which
captures some interesting discount parameters:

F (C) = βcsC
γ.

In this contract cost form, we call β the unit discount since reserving unit capacity in the
contract is (1− β)100 percent cheaper than the expedited shipping rate in the spot market.
On the other hand, we call γ the additional unit discount since when it is less than one
each additional unit reserved in the transportation contract decreases the average cost of
reserving capacity in the contract.

Then the optimal total expected cost function for the periodic contract with reserved
capacity level C and time between shipments T is:

V (x,C, T ) =
αT

1− αT
βcsC

γ + J∞,0(x,C, T ).

In the rest of this section we will use this total cost function for our numerical experiments.
In Figure 5.1 and Figure 5.2, we plot the expected total cost as a function of reserved

capacity level for varying time between shipments to illustrate the effect of the unit discount
on the optimal transportation contract. One expects that when the cost of reserving capacity
in the transportation contract decreases, the buyer’s demand for the contract should increase.
In fact when we give more unit discount in the transportation contract by decreasing β
from 0.98 in Figure 5.1 to 0.90 in Figure 5.2, we observe that the optimal reserved capacity
increases from 1 to 4 while the optimal time between shipments decreases from 3 to 2. Hence,
the buyer increases both the reserved capacity and frequency of shipments in increasing its
demand for the contract.

Figure 5.3 and Figure 5.4, on the other hand, illustrate the effect of the additional unit
discount on the optimal transportation contract. We again plot the expected total cost as a
function of reserved capacity level for varying time between shipments and once more expect
that when there is more additional unit discount the buyer should increase its demand for
the transportation contract. Indeed, when we give more additional unit discount in the
transportation contract by decreasing γ from 1 in Figure 5.3 to 0.9 in Figure 5.4, we observe
that the optimal reserved capacity increases from 4 to 16, while the optimal time between
shipments also increase from 2 to 4. Although the observation that buyer decreases the
frequency of shipments when there is more additional unit discount seems unintuitive at first
glance, we note that the reserved capacity per period in the contract is increased from 2 to 4.
Hence the demand rate for the transportation contract again increases with more additional
unit discount, but in this case, unlike in the unit discount case, the buyer increases the
time between shipments to take advantage of the additional unit discount without reserving
excess capacity.

Another point of interest is to investigate how demand uncertainty effects the optimal
contract parameters or the desirability of the transportation contract for the contract buyer.
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Figure 5.1: The effect of unit discount, β=0.98.

0 1 2 3 4 5 6 7 8 9
837

838

839

840

841

842

843

844

845

846

C

V
(0

,C
,T

)

 

 

V(0,C,1)

V(0,C,2)

V(0,C,3)

V(0,C,4)

V(0,C,5)

Figure 5.2: The effect of unit discount, β=0.90.



CHAPTER 5. COMPUTATIONAL STUDY 58

0 1 2 3 4 5 6 7 8 9
837

838

839

840

841

842

843

844

845

846

C

V
(0

,C
,T

)

 

 

V(0,C,1)

V(0,C,2)

V(0,C,3)

V(0,C,4)

V(0,C,5)

Figure 5.3: The effect of additional unit discount, γ=1.
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Figure 5.4: The effect of additional unit discount, γ=0.90.
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Figure 5.5: The effect of demand variance on total cost.

0 5 10 15
−10

−5

0

5

10

15

20

25

30

35

40

C

V
(0

,0
,5

)−
V

(0
,C

,5
)

 

 

V=8.25

V=5.11

V=2.25

V=0.49

Figure 5.6: The effect of demand variance on value of a contract.
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In Figure 5.5 and Figure 5.6, we respectively plot the expected total cost and value of
the contract as functions of reserved capacity level in the contract for a fixed frequency of
shipments where the different curves represent different demand variances. We calculate the
expected value of a contract by subtracting the expected operational cost of the optimal
contract from the optimal expected operational cost of the contract with zero capacity. We
observe that the expected total cost decreases while the value of a contract increases with
decreasing uncertainty in demand. This observation is actually confirmed by our earlier
remark that the fixed commitment transportation contracts gather the risk related to the
demand uncertainty on the contract buyer. Hence the decreasing demand variance makes
the transportation contract more valuable for the buyer.

In Figure 5.7, we plot the expected total cost with respect to time between shipments
for a fixed level of reserved capacity where the different curves correspond to different levels
of demand uncertainty as before. As the minimums of the curves shift left with decreasing
demand variance we conclude that the buyer increases the frequency of shipments when there
is less uncertainty in demand. In Table 5.1, we list the optimal contract parameters and the
corresponding optimal cost values for varying demand variances. Unlike the frequency of
shipments, we see that the reserved capacity levels do not always increase with decreasing
demand variance. This seemingly unintuitive behavior can be easily explained by looking at
the corresponding reserved capacity levels per period and noticing that they always increase
with decreasing demand, which once again agrees with our earlier observations.

We also look at how the relative magnitudes of the waiting cost and the other opera-
tional cost parameters effect the optimal transportation contract. In Figure 5.8, we plot the
expected total cost function with respect to reserved capacity level for a fixed frequency of
shipments where different curves represent different ratios of the waiting cost to the produc-
tion cost. Since the nominal values of the cost parameters would be misleading, we look at
the ratios instead. We notice that as the relative magnitude of the waiting cost decreases,
the curves in Figure 5.8 shift downwards and right, which indicates that the optimal reserved
capacity in the contract increases as the expected total cost decreases. In Table 5.2, we list
the optimal contract parameters for different ratios of waiting cost to the production cost.
As is the case with Figure 5.8, we expect the buyer to increase its demand for the transporta-
tion contract as the penalty for making customers wait relatively decreases. Although the
reserved capacity levels in the contract always increase with decreasing relative magnitude of
the waiting cost as expected, we notice that the time between shipments also increases in the
first row. This drop in the frequency of shipments may seem somewhat unintuitive but once
more we observe that the reserved capacity in the contract per period always increases. This
can be explained by the intuitive argument that as the penalty of making customers wait
gets less severe, the contract buyer wants to ship a larger portion of demand via contracted
shipment to utilize the discount on the shipping rate compared to the spot market rate.

Lastly Table 5.3 summarizes our numerical results from this section.
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Figure 5.7: The effect of demand variance on frequency of shipments.

Demand Variance
Optimal Contract Parameters Optimal Cost
C T C/T V (0, C, T )

8.25 4 2 2.00 838.17
5.11 5 2 2.50 824.93
2.25 5 2 2.50 809.66
0.49 4 1 4.00 790.12

Table 5.1: The effect of demand variance on optimal contract parameters.

Waiting Cost Ratio Optimal Contract Parameters
p/c C T C/T
0.075 8 3 2.67
0.100 4 2 2.00
0.125 3 2 1.50
0.150 2 2 1.00

Table 5.2: The effect of waiting cost ratio on optimal contract parameters.
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Figure 5.8: The effect of waiting cost ratio on optimal contract capacity.

Parameter
Optimal Contract
C 1/T C/T

β ↓ ↑ ↑ ↑
γ ↓ ↑ ↓ ↑
σ ↓ ↓ − ↑ ↑ ↑
p/c ↓ ↑ ↓ ↑

Table 5.3: Summary results illustrating how the optimal contract parameters change with
respect to costs and demand variability.
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5.2 Comparison of Contracts Types

In this section, we present numerical experiments to illustrate how the optimal contract
parameters change with varying uncertainty in demand distribution. We will also compare
the performances of the contracts we analyzed in previous sections and try to quantify the
value of the contract flexibility for the buyer.
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Figure 5.9: Optimal total expected cost vs reserved capacity level in the fixed commitment
contract with cr = 7, cp = 5, cs = 10, h = 1, p = 5, T = 3, α = 0.95.

Figure 5.9 plots the optimal total expected cost as a function of the reserved capacity
level in the fixed commitment contract. Different colors represent demand distributions
with various levels of uncertainty. Notice that each curve’s intercept with the vertical axis
corresponds to the total expected cost when only the spot market is used for transportation.
Since all the cost curves decrease initially we infer that the fixed commitment contracts are
useful. In other words they can be used to lower the costs. Furthermore notice that the cost
curves shift downward as the uncertainty in demand decreases. These general observations
are intuitive and will hold for other contract types as well.

One last observation specific to fixed commitment contracts is that the minimums of
these curves shift right as the demand uncertainty decreases. This means that the fixed
commitment contract becomes more desirable for the buyer when the demand uncertainty
decreases. This confirms our earlier remark that the fixed commitment contracts gather the
risk related to the demand uncertainty on the contract buyer.
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Figure 5.10: Optimal total expected cost vs reserved capacity level in the option contract
with cr = 2.5, ce = 5, cp = 5, cs = 10, h = 1, p = 5, T = 3, α = 0.95.
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Figure 5.11: Optimal total expected cost vs reserved capacity level in the option contract
with cr = 1, ce = 6.5, cp = 5, cs = 10, h = 1, p = 5, T = 3, α = 0.95.
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Figure 5.10 and Figure 5.11 plot the optimal total expected cost as a function of the
reserved capacity level in the option contract. Different colors represent demand distributions
with various levels of uncertainty as before. Unlike the fixed commitment contract, which
always becomes more attractive for the buyer as the demand uncertainty decreases, the
option contracts may turn out either way. When the reservation price is relatively high,
as in Figure 5.10, the option contract shows the same behavior as the fixed commitment
contracts. However when the reservation price is relatively low, as in Figure 5.11, as the
demand uncertainty increases, a spike in demand becomes more and more probable, hence
the buyer demands more capacity in the option contract to hedge herself against the high
spot market rate.
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Figure 5.12: Optimal total expected cost vs reserved capacity level in the capacity flexible
contract with cr = 2.25, ce = 5, γ = 0.15, cp = 5, cs = 10, h = 1, p = 5, T = 3, = 0.95.

As explained previously, capacity flexible contracts can be seen as a bundle of fixed
commitment and option contracts. Thus their behavior is generally somewhere between
them as illustrated by Figure 5.12. In general the optimal reserved capacity levels may
increase or decrease because of the same reasons we mentioned previously.

In Table 5.4, Table 5.5 and Table 5.6, we list the optimal contract parameters and the
corresponding optimal cost values for varying demand variances for the fixed commitment,
option and capacity flexible contracts respectively. In contrast to the frequency of shipments,
we see that the reserved capacity levels do not always increase with decreasing demand
variance. This seemingly unintuitive behavior can be easily explained by looking at the
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corresponding reserved capacity levels per period and noticing that they always increase
with decreasing demand, which once again agrees with our earlier observations.

Demand Variance
Optimal Contract Parameters Optimal Cost
C T C/T V (0, C, T )

8.25 4 2 2.00 1354.61
5.11 5 2 2.50 1240.35
2.25 5 2 2.50 1203.14
0.49 4 1 4.00 1138.52

Table 5.4: Fixed Commitment Contract: The effect of demand variance on optimal contract
parameters.

Demand Variance
Optimal Contract Parameters Optimal Cost
C T C/T V (0, C, T )

8.25 7 3 2.33 1345.11
5.11 6 2 3.00 1223.32
2.25 6 2 3.00 1142.65
0.49 6 1 6.00 1113.34

Table 5.5: Option Contract: The effect of demand variance on optimal contract parameters.

Demand Variance
Optimal Contract Parameters Optimal Cost
C T C/T V (0, C, T )

8.25 6 3 2.00 1348.87
5.11 5 2 2.50 1235.43
2.25 6 2 3.00 1167.54
0.49 5 1 5.00 1132.96

Table 5.6: Capacity Flexible Contract: The effect of demand variance on optimal contract
parameters.

Figure 5.13 shows the optimal expected total cost under different levels of uncertainty in
demand, where different colors represent the different contract types. Remarkably, the fixed
commitment contract, which gives the least amount of flexibility for the lowest unit cost, is
outperformed only when the demand uncertainty is high.

Lastly, we conduct a small sensitivity analysis and come up with the pricing menu in
Table 5.7 that would make a buyer approximately indifferent between each contract. Hence
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Contract Type Reservation Price Exercise Price Increase in Unit Cost
Fixed Commitment $7.00 $0.00 0.00%

Option $2.50 $5.00 7.14%
Capacity Flexible $2.25 $5.00 3.57%

Table 5.7: The value of contract flexibility for the buyer, γ = 0.15, cp = 5, cs = 10, h = 1, p =
5, T = 3, = 0.95.

compared to the fixed commitment contract a buyer would be willing to pay approximately
$0.50 (or 7.14%) more per unit for the flexibility of an option contract, and $0.25 (or 3.57%)
more per unit for the flexibility of a capacity flexible contract.



69

Chapter 6

Conclusion

6.1 Summary of Results

In this dissertation, we set out to investigate the effective utilization of structured logistics
agreements in production-distribution systems with stochastic demand in order to under-
stand how optimal policies of such systems are affected by outsourced logistics while gaining
managerial insights into practical real-life applications and contributing to the stochastic
supply chain literature.

As our base model, we consider a manufacturer that needs to ship its product to a retail
site to meet stochastic demand. In addition to a logistics agreement already at hand, the
manufacturer has access to a spot market for on demand shipping at a linear rate. The
production is assumed to have linear cost with neither delay nor capacity. We explore the
optimal operating strategies of this system under varying operating conditions and with
different types of agreements.

In Chapter 3, we consider a make-to-order production environment and a fixed-commit-
ment logistic contract with periodic scheduled shipments. This periodic contract allows
the manufacturer to ship essentially freely – since the cost of logistic contract is sunk – in
periods that have reserved shipping capacity. Theorem 3.4.2 completely characterizes the
optimal shipping policy for this problem. This result shows the existence of nonnegative
real numbers that essentially represent the ideal level of pending orders, such that it is
optimal to ship enough orders to bring the number of pending orders as close to this ideal
level as possible. We also show that these ideal levels of pending orders are increasing
with the number of time periods to the next scheduled shipment. Proposition 3.4.3 proves
that increasing reserved capacity levels in the contract results in an increase in the ideal
levels of pending orders, while Proposition 3.3.5 determines that all the ideal levels shift
up by exactly the same amount as the increase in reserved capacity level when there is
only one scheduled shipment. Section 3.2 analyzes the case of unbounded reserved capacity
levels. Proposition 3.2.1 demonstrates that the ideal levels diverge to infinity with unbounded
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reserved capacity levels and more importantly proves that any contracted shipment can have
effect on a limited and quantifiable number of periods prior to its scheduled shipment. This
observation establishes the foundation of a sufficient condition for decomposing the problem
in time that we present in Corollary 3.4.4.

In Chapter 4, we extend our model to a make-to-stock production environment and
consider more sophisticated logistics agreements as well as additional uncertainties in the
system. Section 4.1 extends the analysis of the fixed-commitment contract to a make-to-
stock system. The optimal policy structure is fully characterized by Theorem 4.1.1, which
shows that there are now two critical levels of inventory. These two critical levels together
with the reserved shipment capacity in the contract divide the state space (of inventory at
the retailer) into four partitions such that in the lowest partition it is optimal to ship up
to the smaller critical level using all the contracted capacity plus spot market shipping as
needed, in the second lowest partition it is optimal to fully utilize the contracted capacity,
in the second highest partition it is optimal to ship up to the larger critical level using only
the contracted shipping, while in the highest partition it is optimal to have no shipment
at all. The additional critical level in the make-to-stock model compared to the make-to-
order model is clearly a consequence of allowing the manufacturer to stock inventory at the
retail site instead of just reacting to pending orders. Proposition 4.1.2 and Proposition 4.1.3
extend the results of Chapter 3 regarding the monotonicity of optimal policy with respect
to reserved capacity levels and time to next shipment (in periodic contracts) respectively.
Theorem 4.2.1 shows that a similar result holds for optional agreements when the spot
market rate is stochastic. Section 4.3 analyzes multi-level option agreement, which allows
the buyer to increase the capacity reservation up to a certain percentage with additional
cost. Theorem 4.3.1 gives the optimal policy function for this agreement, which has similar
characteristics to the fixed-commitment contract but has three critical parameters instead
of two. Additional parameter in the optimal policy function stems from the provision in the
agreement that provides extra capacity. Theorem 4.4 proves that when the availability of
additional capacity is uncertain, a similar result holds under certain conditions.

In Chapter 5, we present a computational study to provide managerial insights into the
practical real-life applications of the logistics agreements we consider in this manuscript.
Our analysis and numerical experiments show that, for a manufacturing firm that wants to
outsource its logistics operations, it is significantly more attractive to buy a transportation
contract rather than using only the spot market when pending cost is relatively small com-
pared to other operational costs. However, when pending cost is relatively large, especially
in the case of large demand variance, a substantial increase in the frequency of shipments is
necessary for the contract to be useful, which could render the contract price too expensive
to be profitable under most reasonable contract cost structures. In general, we have found
through our computational study that the larger the demand uncertainty the less attractive
the transportation contracts and also while unit discounts have the effect of increasing the
demand for the transportation contract in both reserved capacity levels and frequency of
shipments, additional unit discount increases the reserved capacity levels while decreasing
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the frequency of shipments in the optimal contract. Lastly, we observed in our numeri-
cal experiments that more structured fixed-commitment contract outperforms more flexible
contracts in all cases except when demand variability is very large.

6.2 Future Directions

In all the models we consider in this dissertation, we assume that the production has
neither lead time nor capacity and that it has linear cost. These assumptions make the
production decision couple with the shipment whereby significantly simplifying the analysis
of mathematical models. However, these assumptions may not be realistic in many real-life
scenarios. Although extensions of the production process in these directions may render the
problem too complicated to solve completely, we envision that efficient policies, which may
have influential practical implications, can be devised.

In this dissertation, our work focuses on determining the characteristics of optimal opera-
tion in simple production-distribution systems with logistics contracts. In our view, other im-
portant areas to work on the overall logistics contracting framework are the optimal contract
purchasing problem of manufacturer given a menu of contracts, as well as the corresponding
problem of logistics provider for designing and pricing of these contacts.
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