
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Multi-agent Cluster Scheduling for Scalability and Flexibility

Permalink
https://escholarship.org/uc/item/9hr3c370

Author
Konwinski, Andrew David

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9hr3c370
https://escholarship.org
http://www.cdlib.org/

Multi-agent Cluster Scheduling for Scalability and Flexibility

by

Andrew D. Konwinski

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Randy H. Katz, Chair
Professor Anthony D. Joseph
Professor Alexandre M. Bayen

Fall 2012

Multi-agent Cluster Scheduling for Scalability and Flexibility

Copyright c© 2012

by

Andrew D. Konwinski

Abstract

Multi-agent Cluster Scheduling for Scalability and Flexibility

by

Andrew D. Konwinski

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Randy H. Katz, Chair

This dissertation presents a taxonomy and evaluation of three cluster scheduling ar-
chitectures for scalability and flexibility using a common high level taxonomy of cluster
scheduling, a Monte Carlo simulator, and a real system implementation. We begin with
the popular Monolithic State Scheduling (MSS), then consider two new architectures: Dy-
namically Partitioned State Scheduling (DPS) and Replicated State Scheduling (RSS). We
describe and evaluate DPS, which uses pessimistic concurrency control for cluster resource
sharing. We then present the design, implementation, and evaluation of Mesos, a real-world
DPS cluster scheduler that allows diverse cluster computing frameworks to efficiently share
resources. Our evaluation shows Mesos achieve high utilization, respond quickly to workload
changes, and flexibly cater to diverse frameworks while scaling to 50,000 nodes in simulation
and remaining robust. We also show existing and new frameworks sharing cluster resources.
Finally, we describe and evaluate RSS, a cluster scheduling architecture being explored by
Google in Omega, their next generation cluster management system. RSS uses optimistic
concurrency control for sharing cluster resources. We show the tradeoffs between optimistic
concurrency in RSS and pessimistic concurrency in DPS and quantify the costs of the added
flexibility of RSS in terms of job wait time and scheduling utilization.

1

Dedicated to my best friend Jocelyn Kirsch. Since my first year as a PhD student,
Jocelyn has stood by me through tough and terrific times. I depend daily on her brilliant
sense of humor and audacious personality for energy, inspiration, and picking good project
names!

i

Contents

Contents ii

List of Figures iv

List of Tables vii

Acknowledgements viii

1 Introduction 1

1.1 Motivation . 1

1.2 Requirements . 3

1.3 Approach and Contributions . 4

1.4 Dissertation Structure . 5

2 Related Work and Taxonomy of Cluster Scheduling 6

2.1 Target Cluster Environment . 6

2.2 Cluster Workload Taxonomy . 7

2.3 A General Model for Cluster Scheduling . 10

2.4 Taxonomy of Cluster Scheduling Architectures 13

2.5 Survey of Related Work . 14

3 Monolithic State Scheduling 16

3.1 MSS Architecture Overview . 16

3.2 Monte Carlo MSS Simulation . 18

3.3 Hadoop, a Case Study of Monolithic State Scheduling 21

3.4 Review of Monolithic State Scheduling . 22

4 Partitioned State Scheduling 23

ii

4.1 Multi-agent Scheduling . 23

4.2 Partitioned State Scheduling . 24

4.3 Monte Carlo DPS Simulation . 27

4.4 Analyzing Mesos DPS Behavior . 27

4.5 Definitions, Metrics and Assumptions . 28

4.6 Homogeneous Tasks . 29

4.7 Placement Preferences . 31

4.8 Heterogeneous Tasks . 32

4.9 Framework Incentives . 33

4.10 Limitations of Partitioned State Scheduling 33

4.11 Partitioned State Scheduling Chapter Summary 34

5 Mesos, a Dynamically Partitioned State Scheduler 35

5.1 Mesos Background and Goals . 35

5.2 Mesos Architecture . 36

5.3 Mesos Implementation . 41

5.4 Mesos Frameworks . 43

5.5 Mesos Evaluation . 46

5.6 Mesos Chapter Summary . 56

6 Replicated State Scheduling 57

6.1 Replicated State Scheduling . 57

6.2 Overview of RSS Architecture . 58

6.3 Monte Carlo RSS Simulation . 62

6.4 Review of Replicated State Scheduling . 63

7 Conclusion and Future Work 65

Bibliography 66

iii

List of Figures

1.1 Prices for renting Amazon EC2 resources over time between July 2006 and
October 2010. The price is calculated by estimating the cheapest way to
acquire 1 EC2 compute unit (left) or the minimum bundle of resources asso-
ciated with 1GB of RAM (right). Drops in prices are due to price discounts
for existing resource types, as well as new types of resources being offered by
Amazon, e.g., High CPU instances. Graphs reproduced from [14]. 2

2.1 CDF of job and task durations in Facebook’s Hadoop data warehouse (data
from [48]). 9

2.2 A diagram of “cluster state”, a table of data representing the state of available
resources on machines in the cluster. The zoomed-in rectangle represents the
beginning of what a single row in cluster state might look like. 12

2.3 Overview of the entire cluster scheduler taxonomy. 13

3.1 Our cluster scheduler taxonomy with Monolithic State Scheduling (MSS)
highlighted. 17

3.2 A diagram of the Monolithic Resource Scheduling (RSS) architecture. Jobs
are submitted to job manager, and enter a job queue, where they wait un-
til they are handled by the Scheduling Agent, which creates task-resource
assignments for each task of the job by editing rows of cluster state. 17

3.3 Monolithic schedulers with single-path (left) and multi-path (right): perfor-
mance as a function of job time in the single-path case, or job timeservice for
the multi-path case (both in seconds). 20

3.4 Results of simulation of 7 days running a monolithic scheduler with uniform
decision time: varying job arrival rate (in jobs per second). A, B, and C are
Google compute cells as described in table 3.1. 21

4.1 Our cluster scheduler taxonomy with Statically Partitioned State Scheduling
(SPS) and Dynamically Partitioned State Scheduling (DPS) highlighted. . . 24

4.2 A conceptual diagram showing Partitioned State scheduling with Statically
Partitioned Cluster State. The dotted line in cluster state represents the
division of rows into two static, non-overlapping scheduling domains, one for
each scheduling agent. 25

iv

4.3 A conceptual diagram showing Partitioned State scheduling with Dynami-
cally Partitioned Cluster State. The meta-scheduling agent is responsible
for resizing the non-overlapping scheduling domains according to a meta-
scheduling policy. 26

4.4 Two-level scheduling (Mesos): performance as a function of job timeservice for
clusters A, B, and C (see Table 3.1 for description of each cluster). 28

5.1 Mesos architecture diagram, showing two running frameworks (Hadoop and
MPI). 37

5.2 Resource offer example. 38

5.3 Data flow of a logistic regression job in Dryad vs. Spark. Solid lines show
data flow within the framework. Dashed lines show reads from a distributed
file system. Spark reuses in-memory data across iterations to improve efficiency. 45

5.4 Comparison of cluster shares (fraction of CPUs) over time for each of the
frameworks in the Mesos and static partitioning macrobenchmark scenarios.
On Mesos, frameworks can scale up when their demand is high and that of
other frameworks is low, and thus finish jobs faster. Note that the plots’
time axes are different (e.g., the large Hadoop mix takes 3200s with static
partitioning). 48

5.5 Framework shares on Mesos during the macrobenchmark. By pooling re-
sources, Mesos lets each workload scale up to fill gaps in the demand of
others. In addition, fine-grained sharing allows resources to be reallocated in
tens of seconds. 49

5.6 Average CPU and memory utilization over time across all nodes in the Mesos
cluster vs. static partitioning. 49

5.7 Data locality and average job durations for 16 Hadoop instances running
on a 93-node cluster using static partitioning, Mesos, or Mesos with delay
scheduling. 52

5.8 Hadoop and Spark logistic regression running times. 53

5.9 The average session load on the load balancer, the average number of sessions
on each web server, and the number of web servers running over time. . . . 54

5.10 Mesos master’s scalability versus number of slaves. 55

6.1 Our cluster scheduler taxonomy with Replicated State Scheduling (RSS)
highlighted. 58

6.2 A conceptual diagram showing Replicated State scheduling. Each Job Man-
ager now maintains its own private copy of cluster state, and the meta-
scheduling agent is responsible for managing updates between private and
common cluster states according to a meta-scheduling policy. 59

v

6.3 A timeline showing two overlapping transaction lifecycles leading to a trans-
action conflict; one from a Batch Scheduler and the other from a Service
Scheduler. The schedulers issue transactions; here the Batch Scheduler makes
decisions quickly while the Service Scheduler is slower. Consequently some
of the Service Scheduler’s transactions fail, and need to be retried. 60

6.4 Results of simulation of 7 days running Replicated State Scheduler (Omega):
performance as a function of job timeservice for clusters A, B, and C (see Table
3.1 for description of each cluster). Solid lines are Batch Schedulers, dotted
lines are Service schedulers. 63

6.5 Results of simulation of 7 days running Replicated State Scheduler (Omega):
effect of all-or-nothing transactions and resource-granularity conflict detec-
tion as a function of job time service. 64

vi

List of Tables

3.1 Mean values of key properties from production Google workloads[42]. 19

4.1 Ramp-up time, job completion time and utilization for both elastic and rigid
frameworks, and for both constant and exponential task duration distribu-
tions. The framework starts with no slots. k is the number of slots the
framework is entitled to under the scheduling policy, and βT represents the
time it takes a job to complete assuming the framework gets all k slots at once. 29

5.1 Mesos API functions for schedulers and executors. 41

5.2 Job types for each bin in our Facebook Hadoop mix. 47

5.3 Aggregate performance of each framework in the macrobenchmark (sum of
running times of all the jobs in the framework). The speedup column shows
the relative gain on Mesos. 50

5.4 Performance of each job type in the macrobenchmark. Bins for the Facebook
Hadoop mix are in parentheses. 51

vii

Acknowledgements

My path to this doctoral dissertation has been anything but solitary. As a social creature
to my core, I owe much to my mentors, lovers, family, and friends.

Since arriving at Berkeley, Randy H. Katz’s advice and friendship have motivated,
shaped, and inspired my research. Beyond research, through Randy’s mentorship I have
grown as a person.

Professors Anthony D. Joseph and Ion Stoica provided feedback, guidance, strategy,
and words of encouragement, without which this dissertation would not exist.

I owe much to Malte Schwarzkopf, whose hard work and thoughtful, determined attitude
towards research inspired and contributed fundamentally to this dissertation. John Wilkes
mentored me at Google; it was through his tactical advice and understanding of my unique
personality that I found my stride as an engineer and researcher. Thanks to the rest of my
collaborators at Google, particularly Michael Abd-El-Malek, Joseph Hellerstein, Rasekh
Rifaat, and Victor Chudnovsky, for their feedback, discussions, and brainstorms.

For their support since before I can remember, I owe my family: my Mom and Dad,
Tim and Debbie Konwinski, as well as my sisters Lindsey Gregory and Jamie Murray, and
brother-in-law Jared Murray. My family has shown unending support, imbuing me with
the confidence to tackle the hardest of problems.

Jocelyn Kirsch has been my closest friend and most intimate supporter since my first
year of graduate school. Our relationship has taken many twists and turns, and along the
way I have grown profoundly and found deep happiness. Her support and frequent infusions
of energy carried me through what felt like impossible challenges. I am lucky to have her
in my life.

Beth Trushkowsky has been more than simply a cube-mate to me, through class projects,
daunting homework assignments, and countless visits to Euclid Avenue for coffee. She is
the most perceptive person I’ve ever met and one of the best listeners. I look forward to
our lifelong friendship, and revisiting our many memories over the years to come, such as
when I embarrassed myself explaining what a DAG is to Richard Karp during our 270 class
project meeting.

Matei Zaharia has been a personal friend, partner, and role model throughout graduate
school. I have learned, grown, traveled, laughed, and worked feverishly with him through
many deadlines, conferences, weekend brunches, talks, visits to industry, and more. I look
forward to future years of friendship and collaboration with Matei.

To my cohort of fellow graduate students, scholars, and friends at UC Berkeley: Ben-
jamin Hindman, Ali Ghodsi, Michael Armbrust, Patrick Wendell, George Porter, Rodrigo
Fonseca, Ariel Rabkin, Isabelle Stanton, Brian Gawalt, Kurtis Heimerl, Kuang Chen, Ariel
Kleiner, Tyson Condie, Lester Mackey, Robert Carroll, Reynold Xin, and Andrew Krioukov.

To my original academic mentor, professor Bill Bultman, who first explained to me the
concept of a PhD and instilled in me the passion to pursue one. Also, to Evelyn Li for her
support and epic feasts during my ramen noodle years.

Jessica Eads has been a role model as well as a source of encouragement, food, and

viii

much more; always at just the right moments. Also, to Bradley Sickenius, my personal
advisor and source of council, for his stabilizing force in my life.

Also, thanks to my mentors at LANL John Bent, and Meghan Quist, and James Nunez;
and also my team and collaborators at Yahoo! including Owen O’Malley, Arun C Murthy,
Jerome Boulon, Runping Qi, Eric Yang, and Mac Yang.

Finally, thanks to Remzi Arpaci-Dusseau for his guidance during my formative years as
a researcher and pushing me to never settle. Also thank to my high school history teacher
Brian Stamper for helping me realize the power of questioning everything and core beliefs.

ix

Curriculum Vitæ

Andrew D. Konwinski

Education

2007 University of Wisconsin, Madison
B.S., Computer Science

2009 University of California, Berkeley
M.S., Electrical Engineering and Computer Science

2012 University of California, Berkeley
Ph.D., Electrical Engineering and Computer Science

Personal

Born October 15, 1983, Pekin Illinois, United States of America

x

xi

Chapter 1

Introduction

1.1 Motivation

In recent years, clusters of commodity servers have been widely adopted as the primary
computing platform for large Internet services, data-intensive scientific applications and en-
terprise analytics. This has been driven by two trends: (1) the decreasing cost of computing
resources (see Figure 1.1) and (2) the increasing accessibility of those resources via public
and private provisioning “cloud” interfaces (see [19]). Driven by these trends, researchers
and practitioners have been developing a diverse array of cluster computing frameworks to
simplify programming the cluster. Prominent examples include MapReduce [24], Dryad [31],
MapReduce Online [23] which supports streaming jobs, Pregel [35], a specialized framework
for graph computations, and others [25, 34, 38].

New cluster computing frameworks will likely continue to emerge, and no single frame-
work will be optimal for all applications 1. Furthermore, multiplexing a cluster between
frameworks improves utilization and allows applications to share access to large datasets
that may be too costly to replicate across clusters. Therefore, organizations will want to
simultaneously run multiple frameworks in the same cluster, picking the best one for each
application.

In addition to growing demand by organizations to run multiple diverse frameworks, the
computations being performed by those frameworks are growing in size (i.e., jobs consisting
of increasing numbers of tasks running in parallel across the cluster). This is due to the
declining cost of storage resources (i.e., disks), enabling organizations to cost-effectively
collect much more data than can be processed on a single machine by using open source
distributed storage systems. To support large jobs to process this “big data”, clusters are
also growing in size (i.e., number of machines). For example, in 2011, Google published a
trace from one of their private clusters composed of 12,500 machines [28]. In addition to

1By “framework,” we mean a software system that manages and executes one or more jobs (i.e., collections
of software executables called “tasks”) on a cluster.

1

	
 $-­‐	
 	
 	
 	

	
 $500	
 	

	
 $1,000	
 	

	
 $1,500	
 	

	
 $2,000	
 	

	
 $2,500	
 	

	
 $3,000	
 	

Jul-­‐06	
 Jul-­‐07	
 Jul-­‐08	
 Jul-­‐09	
 Jul-­‐10	

Pr
ic
e	

of
	
 1
	
 E
C2

	
 U
ni
t	
 f
or
	
 3
	
 y
ea
rs
	

Time	

Lowest	
 Possible	
 Price	
 for	
 3	
 Year	
 Rental	
 of	
 1	
 EC2	
 Compute	
 Unit	

(a) The price to rent resources associated with 1

EC2 compute unit for three years.

	
 $-­‐	
 	
 	
 	

	
 $200	
 	

	
 $400	
 	

	
 $600	
 	

	
 $800	
 	

	
 $1,000	
 	

	
 $1,200	
 	

	
 $1,400	
 	

	
 $1,600	
 	

	
 $1,800	
 	

Jul-­‐06	
 Jul-­‐07	
 Jul-­‐08	
 Jul-­‐09	
 Jul-­‐10	
 M
in
	
 P
ric

e	

of
	
 E
C2

	
 R
es
ou

rc
es
	
 b
un

dl
ed

	
 w
ith

	

1G

B	

of
	
 R
AM

	
 fo
r	
 3

	
 y
ea
rs
	

Time	

Lowest	
 Possible	
 Price	
 for	
 a	
 3-­‐year	
 Rental	
 of	
 AWS	
 resources	
 per	

GB	
 of	
 RAM	
 	

(b) The minimum price to rent a bundle of re-

sources associated with 1GB of ram for three

years. Note that this is less than a single EC2

Compute Unit.

Figure 1.1: Prices for renting Amazon EC2 resources over time between July 2006 and

October 2010. The price is calculated by estimating the cheapest way to acquire 1 EC2

compute unit (left) or the minimum bundle of resources associated with 1GB of RAM (right).

Drops in prices are due to price discounts for existing resource types, as well as new types

of resources being offered by Amazon, e.g., High CPU instances. Graphs reproduced from

[14].

supporting larger jobs, large clusters allow organizations to achieve improved economies of
scale by amortizing cluster management and operational expenses.

We refer to the process an organization uses to allocate the physical compute resources
(e.g., CPUs, storage disks, memory) to its users as cluster scheduling systems or resource
management systems. Such systems can be primarily human systems (i.e., operational staff
allocating and configuring hardware resources for software developers) or software systems
(i.e., a series of interacting daemons that automate allocation and configuration).

Problem Statement: In the face of increasing demand for cluster resources by diverse
cluster computing applications and the growing number of machines in typical clusters, it is
a challenge to design cluster schedulers that provide flexible, scalable, and efficient resource
allocations. We can measure Flexibility in terms of the ease of support for multiple frame-
works. We measure scalability as the job arrival rate and number of machines that can
be managed while providing adequate scheduling response times. Finally, we measure re-
source utilization as the aggregate usage of the underlying physical resources being managed
(e.g., average utilization of all CPUs in the cluster).

Designing a scalable and efficient cluster scheduling system that supports a wide array
of both current and future frameworks is challenging for several reasons. First, each frame-

2

work will have different scheduling needs, based on its programming model, communication
pattern, task dependencies, and data placement. Second, the scheduling system must scale
to clusters of tens of thousands of nodes running thousands of jobs with millions of tasks.
Finally, because all the applications in the cluster depend on the scheduling system, the
system must be fault-tolerant and highly available.

In this dissertation, we examine and classify the architectures of existing software clus-
ter scheduling systems with respect to flexibility, scalability, and efficiency. Additionally,
we propose and evaluate novel multi-agent cluster scheduling architectures, and imple-
mentations of them, that achieve high cluster utilization while providing a more flexible
abstraction to framework developers and scaling to clusters with an order of magnitude
more machines than existing single-agent scheduling architectures.

Historically, cluster scheduling systems are monolithic, which we use to mean architected
with a single scheduling agent process that makes all scheduling decisions sequentially. The
agent takes input about framework requirements, resource availability, and organizational
policies, and computes a global schedule for all tasks. While this approach can optimize
scheduling across frameworks, it faces several challenges. The first is complexity. The
scheduler would need to provide a sufficiently expressive API to capture all frameworks’
requirements, and must solve an online optimization problem for potentially millions of
tasks. Even if such a scheduler was feasible, this complexity would have a negative im-
pact on its scalability, resilience, and maintainability. Second, as new frameworks and new
scheduling policies for current frameworks are continuously being developed [33, 47, 48, 51],
it is not clear whether we are even at the point to have a full specification of framework
requirements. Third, many existing frameworks implement their own sophisticated schedul-
ing [32, 48], and moving this functionality to a global scheduler would require expensive
refactoring.

1.2 Requirements

Here we outline a number of requirements that must be met by the design of resource
schedulers for today’s cluster workloads. In this dissertation, we will evaluate a number of
cluster scheduling architectures based on their ability to satisfy the following requirements:

Scalability. The aggregate number of machines and job-arrival-rate that can be handled
by a single cluster management system. Specifically, we expect scheduler response times to
remain fixed as we simultaneously add more machines and increase job-arrival-rate or job
size.

Flexibility. Support running a highly heterogeneous mix of jobs simultaneously on a
common cluster (e.g., batch analytics and web frameworks).

Usability and Maintainability. Easily adapt new types of jobs and problems to run on
the cluster. Simplify deploying, and upgrading software frameworks.

3

Fault isolation. Minimize dependencies between unrelated jobs to avoid cascading fail-
ures.

Utilization. Achieve high cluster resource utilization according to several metrics,
e.g., cpu utilization, memory utilization, etc.

1.3 Approach and Contributions

In summary, we aim to understand existing cluster scheduling systems, and then apply
that understanding to design and implement a better cluster scheduling system. After
outlining our assumptions about the workload and hardware environments we target, we
propose a general model and taxonomy that will be used throughout the dissertation to
compare three cluster scheduling architectures and concrete software implementations of
those.

At a high level, we strive to apply the following iterative research process:

1. Use our general model and taxonomy to define and explain a cluster scheduling ar-
chitecture.

2. Analyze and compare the architecture to the others using Monte Carlo simulations
with simplifying assumptions.

3. When possible, describe and evaluate a real-world implementation of the architecture.

4. Repeat for next architecture.

In our first iteration of this research methodology, we apply our general model and tax-
onomy to identify two existing cluster scheduling architectures: Monolithic State Schedul-
ing (MSS) and Statically Partitioned State Scheduling (SPS). We provide a simulation based
evaluation of MSS to observe the architectural limitations along the key performance metrics
of scheduler utilization and amount of time jobs spend in pending queues.

We next use our general model and taxonomy to propose a novel, more decentralized,
cluster scheduling architecture: Dynamically Partitioned State Scheduling (DPS). We ana-
lyze the architecture based on the requirements described in Section 1.2, and then describe
in detail our implementation and evaluation of Mesos, a cluster scheduler that we built with
the DPS architecture.

Finally, we use our general model and taxonomy to identify an even more decentralized
architecture, Replicated State Scheduling (RSS), which we have explored in collaboration
with Google. We analyze the architecture and compare it to MSS and DPS using a simula-
tion framework we built, that plays synthetic cluster workload traces parameterized using
measurements of real Google workload traces.

In summary, our contributions are:

• A taxonomy, general model, and simulation framework to compare the scalability,
flexibility, and utilization of the MSS, DPS, and RSS architectures.

4

• The design, implementation, and evaluation of Mesos, a Dynamically Partitioned
State scheduling system that scales to clusters of tens of thousands of machines, pro-
vides increased framework development flexibility, and increases resource utilization.

• An evaluation of the design of Omega, a Replicated State Scheduling system being
explored by Google.

1.4 Dissertation Structure

The remainder of this dissertation begins by presenting two taxonomies in Chapter 2.
First a taxonomy of cluster workloads, and then a general taxonomy of cluster schedulers
that we will use throughout the dissertation to compare of a number of existing and new
cluster scheduling architectures.

In Chapter 3, we introduce and describe our cluster scheduling Monte Carlo simula-
tion framework and use it along with our scheduler taxonomy to define and evaluate the
Monolithic State Scheduling (MSS) architecture.

Chapter 4 introduces the general concept of multi-agent scheduling, and focuses on a
particular class of scheduling architectures, called Partitioned State Scheduling, in which
cluster state is divided between multiple scheduling agents as non-overlapping scheduling
domains. The discussion is further divided into independent discussions of two subclasses
of PSS: Statically Partitioned State Scheduling (SPS) and Dynamically Partitioned State
Scheduling (DPS). We conclude the chapter with an analysis of the behavior of DPS using
a simple performance model and a Monte Carlo simulator.

In Chapter 5, we present the design, implementation, and evaluation of Mesos, a real
world DPS cluster management system.

Chapter 6 introduces a new scheduling architecture we are exploring in collaboration
with Google, called Replicated State Scheduling (RSS), in which scheduling domains may
overlap and optimistic consistency control is used to resolve conflicting transactions. Then
we evaluate the overhead of conflicts using a realistic simulator playing real google workload
traces.

Finally, we conclude in Chaper 7.

5

Chapter 2

Related Work and Taxonomy of

Cluster Scheduling

We begin this Chapter in Section 2.1 by laying a foundation documenting our assump-
tions about the cluster computing environment we use throughout the rest of this disserta-
tion. In Section 2.2, we introduce a taxonomy of cluster workloads based on key dimensions
such as job arrival rate and job pickiness. We then present a case study of real workload
traces from production Facebook clusters. Section 2.3 discusses the job scheduling problem,
and provides a general modeling framework to understand and compare cluster scheduling
architectures. This framework consists of component definitions and a description of the
purpose and process of cluster scheduling, i.e., how the involved components interact, and
outlines the design tradeoff space for cluster scheduling architectures. Then, in Section 2.4
we propose a taxonomy of cluster scheduling architectures to use as a reference throughout
this dissertation. Section 2.5 presents a survey of existing cluster scheduling systems.

2.1 Target Cluster Environment

In this section, we list the key assumptions about the cluster environment assumed by
the three scheduling architectures we evaluate in this dissertation. These assumptions focus
on the types and arrangement of resources in the cluster.

• Use of commodity servers: The clusters targeted by the systems we evaluate employ
inexpensive but unreliable servers. Such commodity hardware is composed of cheaper,
lower quality, components that are more likely to fail. Organizations build clusters
of commodity servers to achieve cost benefits associated with moving fault tolerance
from hardware to software [19, 20]. Therefore, the applications running over these
systems must tolerate hardware failures. This assumption implies that all cluster

6

scheduling architectures must be able to recover from the failure of any machine in
the cluster.

• Tens to hundreds of thousands of servers: Large internet companies, such as Google
and Facebook, maintain some of the world’s largest clusters, with hundreds of thou-
sands of machines [20]. As cluster computing continues to become more mainstream
with the availability of an increasing number of open source cluster computing frame-
works, non-tech organizations will continue to build larger and larger clusters. Cluster
size has a direct impact on the design of the cluster resource scheduling systems for
two main reasons. First, the scheduling decision time of many popular scheduling
algorithms is a function of the number of machines being scheduled over. Second, as
the size of the cluster increases, typically so does the number of users, and thus the
average job arrival rate.

• Heterogeneous resources: Large clusters of commodity servers tend to be heteroge-
neous. We have observed this in clusters inside Google [28], Twitter, Facebook, and
more. This includes heterogeneity in software (e.g., machines with different versions of
the Linux kernel) and hardware (e.g., machines with varying amounts of memory, or
a subset of machines containing flash drives). Much of this heterogeneity results from
the natural growth of clusters spread out over years, typically tracking the growth of
the organization. Each time that a batch of new servers is added, the newest gen-
eration of hardware is purchased. This leads to cross-generation heterogeneity, and
directly affects the design of cluster schedulers since many jobs are picky about the
hardware they run on, that is, they require or prefer to run on particular types of
machines1.

• Use of commodity networks: Typical data centers use Ethernet networks in a tree
topology. In these networks, bisection bandwidth per node is much lower than that
of the outlink from each node, which in turn is lower than the total bandwidth of
the disks on the node. Therefore, to run efficiently, data and communication intensive
applications must control the placement of their computations and the design of cluster
schedulers must facilitate jobs expressing such placement preferences.

Note that many of the above assumptions about cluster environment differ from typical
high performance computing environments (see Section 2.5.1).

2.2 Cluster Workload Taxonomy

We now discuss the kinds of workloads found in our target clusters that affect the
design of cluster scheduling architectures. We make this concrete through a case study
of Facebook’s Hadoop workload. The workloads of interest can vary along the following
dimensions:

Service Jobs vs. Terminating Jobs. There are two primary types of jobs used in
cluster frameworks: service jobs and terminating jobs. Service Jobs consist of a set of

1We define and discuss “picky” jobs in detail in Sections 2.2 and 4.7

7

service tasks that conceptually are intended to run forever, and these tasks are interacted
with by means of request-response interfaces, e.g., a set of web servers or relational database
servers. Time and resources are required to perform startup activities for each new job and
task, such as forking operating system processes or threads, loading data from disk into
memory, and populating caches. Service Jobs are useful because they amortize the cost of
such startup activities across many service requests. Terminating Jobs, on the other hand,
are given a set of inputs, perform some work as a function of those inputs, and are intended
terminate eventually. Scientific applications, such as weather simulations, are often written
as terminating jobs. They take a set of input parameters, compute for hours or days,
and return a set of output parameters. Most existing cluster management systems were
not built to support both service and terminating jobs. In fact, traditional HPC cluster
management systems support only terminating jobs, requiring users to specify an estimate
of job run-time with each scheduling request, and terminating the job after that amount of
time has elapsed. Part of our evaluation of the three scheduling architectures we propose
in this dissertation is to gauge their support for both types of jobs. We call frameworks
that manage service jobs “service frameworks” and those that manage terminating jobs
“terminating-job frameworks”.

Task pickiness. Tasks can have requirements and preferences about which physical re-
sources they are bound to. For example, a job’s tasks may require machines that have a
public IP address. Pickiness is a measurement of how many cluster resources could poten-
tially satisfy a task’s requirements or preferences; more picky implies fewer resources are
satisfactory. This dimension of cluster workload has major implications for the design of
the cluster scheduling architecture, since users must be able to describe the requirements
or preferences for their jobs to the cluster scheduling system.

Job elasticity. Some jobs are able to use different amounts of resources at different times,
based on load. Other jobs require a fixed amount of resources for the duration of their
runtime. This dimension impacts the design of cluster schedulers at the level of the API
that frameworks use to be acquire resources for their tasks. Cluster schedulers that do not
provide an easy way for frameworks to dynamically grow, shrink, or swap out the resources
they are using are less “flexible” and, in general, achieve lower utilization of resources.

Job and task duration. The length of jobs and tasks can range from very short to
very long. We also refer to this dimension as granularity; we call short jobs or tasks “fine
grained” and long ones “coarse grained”. While service job are intended to run until they
fail or are manually restarted, the duration of terminating jobs may vary widely. Job and
task granularity are relevant to the design of cluster schedulers. Fine grained jobs are likely
to be more negatively impacted by the time they spend waiting to be scheduled in the Job
Queue of a Job Manager, which can happen when the scheduling agent becomes heavily
utilized. Task granularity has a major effect on the number of tasks that must be handled
per unit time in the system. The more fine-grained the tasks, the more tasks that can
complete, and thus the more that must be scheduled per unit time.

Task scheduling-time sensitivity. Service frameworks have traditionally been used
when requests require very quick response times, for example, web servers that must respond

8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000 100000

C
D

F

Duration (s)

MapReduce Jobs
Map & Reduce Tasks

Figure 2.1: CDF of job and task durations in Facebook’s Hadoop data warehouse (data

from [48]).

to requests for web pages within hundreds of milliseconds. On the other hand, terminating-
job frameworks have traditionally been used for batch applications. However, terminating-
job frameworks are increasingly being used for latency sensitive workloads. Examples of
such uses include interactive data analysis through SQL interfaces such as Hive2 on top
of Hadoop, and periodic report generating jobs, such as hourly analysis of ad click data.
In jobs such as these, tasks have durations as short as a second or less. Thus scheduling
delay can have a significant impact on user experience (see the discussion of “Job and task
duration” above). This dimension impacts the design of any cluster schedulers that aim to
support such latency sensitive workloads, either via service jobs or terminating jobs. Such
schedulers must be able to provide some statistical guarantees to jobs about the maximum
time tasks will have to wait to be scheduled.

In this thesis we will evaluate scheduling systems based on their ability to handle workloads
consisting of mixes of jobs spread across the dimensions discussed above. We next use our
taxonomy to classify two specific workload mixes: Facebook’s data analytics MapReduce
workload, and mixed workloads of terminating and service jobs.

As our first example of a popular workload that can be categorized according to the
above taxonomy, many organizations today use the open source Hadoop MapReduce frame-
work [2] as their primary cluster manager, and run only data analytics jobs in those clusters.
We now present a case study of the Hadoop workload inside of one such organization, Face-
book.

9

2.2.1 Case Study: Facebook’s Hadoop and Hive Workload

As an example of a popular workload that all general cluster schedulers should seek to
support, consider the workload of data analytics jobs run inside the Hadoop data warehouse
at Facebook [6]. Using the language of our workload taxonomy in Section 2.2, this workload
consists exclusively of elastic, terminating jobs, with a mix of fine and coarse grained tasks.

Facebook loads logs from its web services into a Hadoop cluster of 2000 machines,
where they are used for applications such as business intelligence, spam detection, and
advertisement optimization.

Figure 2.1 shows a CDF of task and job durations in the workload. We see a wide range
of durations for both tasks and jobs. Most jobs are short, the median job being 84s long, but
some jobs run for many hours. Also, the jobs are composed of fine-grained map and reduce
tasks; the median task length is 23s. In addition to “production” jobs that run periodically,
the cluster is used for many experimental jobs, ranging from multi-hour machine learning
computations to 1-2 minute ad-hoc queries submitted interactively through Hive.

2.2.2 Mixed Workloads: Service and Terminating Jobs

In the case study of Facebook workload above, though we observed a wide range of
different job and task durations, all jobs were of the terminating type. There is another even
more challenging workload type gaining popularity, consisting of a mixture of terminating
and service jobs. Such mixed workloads are attractive to organizations because front-end
applications usually have variable load patterns, such as diurnal cycles and spikes. Thus
there is an opportunity to scale them down during periods of low load and use free resources
to speed up back-end workloads. Google runs a common cluster resource manager that
is responsible for scheduling just such a workload consisting of service and terminating
jobs [41]. In chapter 6, we present our exploration in collaboration with Google of an
architecture aimed to support such mixed workloads.

Next, we shift our focus away from the environment and inputs to cluster scheduling
systems, and onto to the design and purpose of the systems themselves. We begin in the
next section by presenting a general model identifying the abstract components of cluster
scheduling systems.

2.3 A General Model for Cluster Scheduling

In this section we describe the high level process of cluster scheduling and define nec-
essary terminology. We seek a description that is abstract enough to serve as a modeling
framework into which a variety of specific cluster scheduling architectures can fit. This will
form the framework within which we will propose and evaluate cluster schedulers throughout
this dissertation.

2Hive[3] is a system that offers a SQL-like programming model and compiles queries into Hadoop MapRe-
duce jobs.

10

2.3.1 The Purpose and Process of Cluster Scheduling

At a high level, the fundamental objective of a cluster resource scheduler, or just “cluster
scheduler”, is to pair units of execution, i.e., tasks, with the resources required for those
executions to run. Tasks must be assigned to a server containing available resources before
they can execute. To do this, scheduling agents create task-resource assignments (i.e., assign
resources such as CPUs and memory to tasks that will execute using those resources) by
editing the row of cluster state that represents the server to which the resources belong.
Each time a task-resource assignment is made, the scheduling agent modifies the row of
cluster state that represents the server, editing each of the columns representing resources
required by the task, ensuring that the values never become negative. Jobs are owned by
users and may have relative levels of importance, priority, etc. Upon a task’s completion,
the task-resource assignment is destroyed and the resources that were assigned to the task
are freed by again editing the row of cluster state representing the server and increasing the
values of columns representing the resources that were used by the task.

2.3.2 Terminology

• Resource: A consumable abstraction of a physical device that provides a service that
is necessary or useful to accomplish a computational goal. Examples include CPU,
disk, and RAM.

• Server: A server machine that can hold a number of Resources.

• Cluster State: A logical data table, similar to a database table, with one row per
server in the cluster. Columns represent different types of resources that a server can
contain. Rows can be added, read, updated, or deleted. These operations correspond
to the addition, reconfiguration, or removal of whole Servers to/from the cluster or
resources to/from individual servers. Figure 2.2 contains a conceptual diagram repre-
senting cluster state and a zoomed-in view of a single row.

• Scheduling Domain: A subset of the rows in Cluster State.

• Task: An atomic unit of computation. A Task optionally “has a” set of resource
requirements, and optionally “has a” set of placement constraints.

• Job: A unit of workload. A Job “has a” collection of tasks, “has a” list of job-level
scheduling constraints, and “has a” User. Jobs can be “service jobs” or “terminating
jobs” (see Section 2.2).

• Task-Resource Assignment: The pairing of a task with a non-empty set of avail-
able resources on a single machine. Conceptually this consists of the following infor-
mation sufficient to create a transaction that can be atomically “applied” to cluster
state: {machine ID, task ID, 〈resource name1, resource amount1〉, 〈resource name2,
resource amount2〉, . . . }. Specifically, when a task-resource assignment is applied to
cluster state, the row of cluster state uniquely identified by machine ID, will have
the value corresponding to the column associated with resource namen decreased by
the corresponding resource amountn. For example, a task-resource assignment might
look like: {machine ID: 12, task ID: 20, 〈“CPUs”, 2.0〉, 〈“Memory (GB)”, 1.0〉}.

11

Machine	
 ID	
 	
 CPUs	
 available	
 	
 RAM	
 available	
 	
 IP	
 addresses	
 available	
 	
 	
 …	
 	

Figure 2.2: A diagram of “cluster state”, a table of data representing the state of available

resources on machines in the cluster. The zoomed-in rectangle represents the beginning of

what a single row in cluster state might look like.

• Scheduling Agent Policy: The rules and algorithms used by a Scheduling Agent to
make Task-Resource Assignments. Examples include: fair sharing, random, priority
scheduling.

• Scheduling Agent: Creates Task-Resource Assignments based on a Scheduling
Agent Policy. A Scheduling Agent “has a” Scheduling Agent Policy. Inputs are a
Job and access to a Scheduling Domain. Output is a set of Task-Resource Assign-
ments.

• Job Transaction: A set of Task-Resource Assignments for a single job submitted
simultaneously to Cluster State.

• Job Scheduling Decision Time: The amount of time a Scheduling Agent spends
building a job transaction, i.e., attempting to schedule all of the Tasks in a Job,
matching them with Servers that have suitable resources available.

• User: submits Jobs to Job Managers. A Scheduling Agent Policy may use a Job’s
User to make decisions about and optionally has an expectation of maximum schedul-
ing time acceptable for each job.

• Job Queue: A Queue of Jobs with tasks that have not run to completion.

• Job Manager: The entity responsible for managing Jobs and interfacing with Users.
A Job Manager “has a” Scheduling Agent and “has a” Job Queue.

12

Cluster
Scheduling

Monolithic
(Single-agent) Multi-agent

Partitioned State
Scheduling

Statically
Partitioned

Dynamically
Partitioned

Replicated State
Scheduling

Figure 2.3: Overview of the entire cluster scheduler taxonomy.

2.4 Taxonomy of Cluster Scheduling Architectures

Throughout the rest of this dissertation, we will describe and compare three general
types of cluster scheduling architectures: Monolithic State Scheduling (MSS), Partitioned
State Scheduling (PSS), and Replicated State Scheduling (RSS). To set the stage, we provide
a high level overview of each of these here.

Monolithic State Scheduling. Single scheduling agent, with exclusive access to clus-
ter state, performs all scheduling decisions serially i.e., in order; no job-level scheduling
concurrency.

Partitioned State Scheduling. Multiple scheduling agents each perform independent
scheduling decisions in parallel on non-overlapping partitions of cluster state. We focus
primarily on a variant of PSS in which the partitions are dynamically resized by a centralized
meta-scheduling agent called Dynamically Partitioned State Scheduling (DPS).

Replicated State Scheduling. Multiple scheduling agents each maintain full private
copies of an authoritative common cluster state. Agents perform their scheduling decisions
in parallel. Optimistic concurrency and conflict resolution policies are used to detect and
resolve conflicts resulting from concurrent writes to the same row of cluster state.

Figure 2.3 presents the above scheduling architectures in a tree taxonomy. We will
return to this figure as we cover each of the three architectures in detail throughout the rest
of this dissertation. We cover Monolithic State Scheduling in Chapter 3; Partitioned State
Scheduling in Chapters 4 and 5; and Replicated State Scheduling in Chapter 6.

Now that we have established a basic understanding of the abstract components and

13

purpose of a cluster scheduling system and introduced a high level taxonomy of architectures
we will consider, we present a survey of related work in the cluster scheduling space.

2.5 Survey of Related Work

In this section, we describe a number of cluster scheduling systems related to our work.

2.5.1 HPC and Grid Schedulers

The high performance computing (HPC) community has long been managing clus-
ters [43, 52] to support scientific computing applications such as very large simulations
of natural phenomena (e.g., weather, or nuclear explosions). Their target compute environ-
ment typically consists of specialized hardware, such as expensive high speed networking
(e.g., infiniband) and storage devices. In their workloads, jobs do not need to be scheduled
local to their data. Furthermore, all of the tasks within a typical job are tightly coupled via
message passing with synchronization barriers. Also, a job tends not to change its resource
demands during its lifetime. At the beginning of a typical HPC job, a number of long
running processes (i.e., tasks) are started, these often represent n-dimensional partitions of
a large space. These tasks exchange messages with their neighbors as they step through
iterations representing forward movement through time, and they may run for weeks or
months. Because of the typically long run-time of these tasks, HPC schedulers can easily
keep up with the scheduling workload presented. The increasing popularity of computation
frameworks with tasks with much shorter average running time has led to a new cluster
environment (see Section 2.1) which we will target in this dissertation.

Additionally,HPC schedulers require users to declare the required resources at job sub-
mission time. The Job’s tasks are then assigned to machines in the cluster, which they use
for the life of the job. This does not allow jobs to locally access data distributed across the
cluster, and this is not typically a problem because HPC workloads typically do very little
reading from disk (i.e., they are “write-heavy”). Similarly, HPC jobs do not usually need
to grow or shrink dynamically (though they may be able to benefit from doing so), and so
popular HPC schedulers do not focus on features that enable this.

In summary, HPC environments generally have the following characteristics3:

• Specialized hardware resources

• Homogeneous resources

• Computationally intensive, write-heavy workloads

Grid computing has mostly focused on the problem of making diverse virtual organi-
zations share geographically distributed and separately administered resources in a secure
and interoperable way.

3We say “generally” because there are probably cases of HPC jobs or users that are exceptions to all
observations.

14

2.5.2 Public and Private Clouds

Virtual machine clouds such as Amazon EC2 [1] and Eucalyptus [39] isolate applications
while providing a low-level abstraction (VMs). The environments they were built to target
have a few relevant characteristics that differ from to those that this dissertation is concerned
with. These systems generally do not let applications specify placement preferences or
requirements beyond the amount of resources their VMs require and some affinity or non-
affinity preferences (i.e., whether a job’s VMs can be placed on the same physical machine).
In the environments we will focus on, applications may require more advanced ways to
express their pickiness.

2.5.3 Condor

The Condor cluster manager uses the ClassAds language [40] to match nodes to jobs.
Using a resource specification language has implications on scheduling flexibility for appli-
cations as we will further discuss in this dissertation, since not all requirements may be
expressible, e.g. delay scheduling [48] is not expressible. Also, porting existing frameworks,
which have their own schedulers, to Condor (an MSS) may be more difficult than port-
ing them to run in scheduling architectures where existing schedulers fit naturally into a
two-level scheduling model (PSS and RSS).

In the next chapter, we present an overview of the Monolithic State Scheduling archi-
tecture.

15

Chapter 3

Monolithic State Scheduling

In this Chapter we present Monolithic State Scheduling (MSS), the first of three schedul-
ing architectures that we evaluate in this dissertation, and our baseline for comparison. We
describe the architecture and then evaluate its scalability and flexibility using Monte Carlo
simulations.

3.1 MSS Architecture Overview

In MSS, a single scheduling agent is present, contained within a single job manager.
Thus, we also refer to MSS as “single-agent scheduling”. All task-resource assignments are
made serially by this single scheduling agent that implements all policy choices in a single
code base. Figure 3.1 shows where this architecture fits into the taxonomy we introduced
in Chapter 2. As discussed in Section 2.5, most existing cluster management systems, such
as Hadoop and existing HPC systems like Torque [43], use MSS.

In an MSS architecture, though scheduling policies reside within a single code base,
different types of jobs may exercise different code paths in the scheduling logic. For example,
using the language of our workload taxonomy in Section 2.2, one could imagine non-picky,
terminating “batch” jobs being scheduled with a quick-and-simple scheduling algorithm. On
the other hand, service jobs might be very picky about the resources they can use in order
to meet stringent availability and performance targets and could require computationally
expensive task-resource assignment logic to achieve high enough quality task placement.

We refer to scheduling in which task-resource assignments are made using a single
scheduling assignment policy, i.e., a single code path, as single-path scheduling, and schedul-
ing logic that chooses resources differently according job type, i.e., via multiple code paths,
as multi-path.

Single-path Monolithic State Schedulers are straightforward to implement and use, but
suffer inherent limitations in scale, flexibility, and extensibility. Due to their serial nature,
they are intrinsically limited in scale, leading to job queuing backlog as scheduler utilization

16

Cluster
Scheduling

Monolithic
(Single-agent)

Multi-agent

Partitioned State
Scheduling

Statically
Partitioned

Dynamically
Partitioned

Replicated State
Scheduling

Figure 3.1: Our cluster scheduler taxonomy with Monolithic State Scheduling (MSS) high-

lighted.

Job	
 Manager	

Scheduling	

Agent	

Job Queue Job	
 …	
 Job	
 2	
 Job	
 1	
 Cell	

State	

Figure 3.2: A diagram of the Monolithic Resource Scheduling (RSS) architecture. Jobs

are submitted to job manager, and enter a job queue, where they wait until they are handled

by the Scheduling Agent, which creates task-resource assignments for each task of the job by

editing rows of cluster state.

17

approaches 100%. They are also prone to head of line (HOL) blocking, wherein a large and
high-priority job with complex scheduling constraints may cause scheduling delays for all
subsequent jobs, and hence suboptimal cluster utilization, or, in the worst case, starvation.
Also, because all jobs must be handled by a single scheduling algorithm, the scheduling
agent’s logic must be kept general enough to handle a wide variety of jobs. This limits the
flexibility of the scheduling agent, making it difficult to support specialized scheduling logic
for each unique workload. This is especially of concern when handling mixed workloads as
described in Section 2.2.2. For example, workloads consisting of mostly batch-style jobs may
be best scheduled via a simple fair sharing algorithm without preemption, while a workload
consisting of latency sensitive jobs may be best scheduled via a strict priority algorithm
where tasks are preempted to meet goals for maximum or average task scheduling-time.

Multi-path MSS addresses some of the flexibility concerns with single-path MSS by al-
lowing different scheduling algorithms to be used within a single scheduling agent. However,
multi-path MSS does not address the scaling issues associated with a single scheduling agent
making all task-resource assignments in serial. Nor does it fully address extensibility issues:
using different code paths within a single code base makes it more difficult to independently
evolve the separate scheduling algorithms than if they were cleanly separated into different
components of the architecture. For example, if a change is fixed in one scheduling path,
then service for all job types will be interrupted when the new code is pushed into production
and the scheduling agent process is restarted by the organization’s cluster operations team.
Additionally, the presence of multiple scheduling code-paths introduces the new problems
of fault and performance isolation. In Chapter 4, we will present multi-agent scheduling, a
natural evolution of multi-path MSS allowing for more independence and parallelism that
addresses many of these concerns.

3.2 Monte Carlo MSS Simulation

To explore the performance of the MSS architecture, we collaborated with researchers
at Google to implement a simple monolithic scheduler in a Monte Carlo simulator fed by
workloads that use exponential distributions for key input parameters such as job interar-
rival times. The exponential distributions are parameterized by measurements from real
Google workloads. In addition to evaluating the MSS architecture, we will further use our
Monte Carlo simulator in Chapters 4 and 6 to evaluate and compare PSS and RSS.

Parameters. Our Monte Carlo simulations support multiple schedulers, although the
results reported in this dissertation consider just two: batch and service. Each scheduler
is fed a workload that has an average job arrival ratei per second (i.e., the inverse of the
average inter-arrival time), and an average of tasks per jobi; both are used as parameters for
exponential distributions. Table 3.1 shows the values of job arrival ratei and tasks per jobi
we derived from measurements of three Google clusters.

We model the scheduler decision time as a linear function of the form job timei +
task timei × tasks per jobi, where job timei is a constant overhead for a job and task timei
represents the incremental cost to place each task. Since most tasks in a job in our real-
life workloads have the same resource requirements and constraints, this turns out to be a
reasonable approximation of Google’s current cluster scheduling logic.

18

job arrival rate tasks per job task duration
cell batch service batch service batch service

A (medium) 0.212/s 0.00274/s 37.19 23.19 274 s 317 s
B (large) 0.377/s 0.00870/s 52.37 8.18 707 s 418 s
C (medium) 0.268/s 0.00114/s 37.33 18.86 289 s 18610 s

Table 3.1: Mean values of key properties from production Google workloads[42].

In our experiments, we either vary decision timei, using the values of job arrival ratei
and tasks per jobi presented in Table 3.1, or we vary job arrival ratei, in which case we
conservatively approximate practical scheduler decision times by using job time = 0.1 s and
task time = 5 ms.

For all scheduling agents, we chose to use a randomized first-fit scheduling algorithm
inspired by the logic used by Google’s current scheduler. The algorithm used to schedule a
single job is:

pool← list of all machines in cluster
while pool has more machines and job has more tasks to schedule do

candidate← random machine in pool
if candidate has enough available resources to fit at least one of job’s tasks then

create a task-resource assignment between candidate and job’s next task to sched-
ule

else
remove candidate from pool

end if
end while

Pre-filling. The Monte Carlo simulator sets up the state of the cluster before each exper-
iment by pre-filling it with jobs representing those that were present at the beginning of the
simulation window. For this preloading phase, the simulator uses task-size data extracted
from the same real clusters that our distribution parameters are derived from, up to the
point where the cluster is about 60% full, which is comparable to utilization levels seen
in practice at Google. We use this fill-to-a-point approach because the algorithm used in
Google’s real production system to over-commit resources is too complicated and specialized
to use in our simple simulator. Once the cluster has been pre-filled, the synthetic workload
is used to generate job inter-arrival rates and the number of tasks each job has by drawing
from exponential distributions with the mean values shown in Table 3.1. For simplicity,
each task is sized to 1.1 cores and 1.5GB of memory for all (i.e., pre-filled and non-prefilled)
tasks, a common task size seen in practice in Google workloads.

We assume a serial monolithic scheduler with the same (“uniform”) decision time for
batch and service jobs, to reflect the need to run much of the same code for every job type.
We also model a monolithic scheduler with a shorter job scheduling decision time for batch
jobs than for service jobs; we refer to this as a multi-path monolithic scheduler, as it implies
multiple possible code paths through the scheduling logic.

Figure 3.3 compares these approaches by simulating the system, starting with the pre-
filled cluster state as described above, and running for 7 day of simulated time. In the

19

10ms 0.1s 1s 10s 100s
10ms

1s

1m

1h

1d
A
B
C

10ms 0.1s 1s 10s 100s
10ms

1s

1m

1h

1d
A
B
C

(a) Job wait time.

10ms 0.1s 1s 10s 100s
0.0

0.2

0.4

0.6

0.8

1.0
A
B
C

10ms 0.1s 1s 10s 100s
0.0

0.2

0.4

0.6

0.8

1.0
A
B
C

(b) Scheduler utilization.

Figure 3.3: Monolithic schedulers with single-path (left) and multi-path (right): perfor-

mance as a function of job time in the single-path case, or job timeservice for the multi-path

case (both in seconds).

baseline case, we vary the scheduling decision time on the x-axis by changing job time.
In the multi-path case, we split the workload into batch and service workloads and set
job timebatch = 0.1s and task timebatch = 5ms, while we vary job timeservice, keeping
task timeservice = 5ms. FOr the purpose of our evaluation, we chose a baseline SLO for
job wait time of 30s based on experience of Google cluster operating experience.

The results are not surprising: in the baseline case, the job wait time is short and the
job wait time SLO is easily met until the decision time is large enough that the scheduler
is saturated (Figure 3.3), or until the job arrival rate causes saturation of the scheduling
agent (Figure 3.4).

With a “fast path” for batch jobs, both average job wait time and scheduler utilization
decreased significantly, since the majority of jobs are batch ones. Head-of-line blocking
effects still occur, in which “fast-path” batch jobs get stuck behind a service job, and the
ultimate scalability is still limited by the processing capacity of a single scheduler. To do
better, we need some form of parallel processing.

20

0.01 0.1 1 10

10ms

1s

1m

1h
1d A

B
C

(a) Job wait time; the SLO is 30s.

0.01 0.1 1 10
0.0

0.2

0.4

0.6

0.8

1.0
A
B
C

(b) Scheduler utilization.

Figure 3.4: Results of simulation of 7 days running a monolithic scheduler with uniform

decision time: varying job arrival rate (in jobs per second). A, B, and C are Google compute

cells as described in table 3.1.

3.3 Hadoop, a Case Study of Monolithic State Scheduling

Hadoop is a popular cluster scheduling system that implements the Monolithic State
Scheduling architecture. In Hadoop, the Job Manager is referred to as the “JobTracker”.
The Hadoop JobTracker takes a global lock on the Java object representing Cluster State
and makes scheduling decisions for each map or reduce task serially.

In addition to scaling limitations, Hadoop also suffers flexibility limitations associated
with MSS. As we discussed in Section 2.2.1, Facebook runs large Hadoop clusters. To meet
the performance requirements of their jobs, Facebook uses a fair scheduler for Hadoop that
takes advantage of the fine-grained nature of the workload to allocate resources at the level
of tasks and to optimize data locality [48]. Unfortunately, this means that the cluster can
only run Hadoop jobs. If a user wishes to write an ad targeting algorithm using the well-
known MPI message passing system (see Section 2.5 for more background on MPI) instead
of MapReduce, perhaps because MPI is more efficient for this job’s communication pattern,
then the user must set up a separate MPI cluster and import terabytes of data into it. This
problem is not hypothetical; our contacts at Yahoo! and Facebook report that users want
to run MPI and MapReduce Online (a streaming MapReduce) [12, 13].

An ideal scheduling architecture would enable these usage scenarios by providing sharing
between multiple fine-grained cluster computing frameworks with fundamentally different
programming abstractions.

The scaling and flexibility limitations of the architecture of Hadoop discussed above has
lead the Hadoop community to build Hadoop Next Generation (or Hadoop NextGen for
short) which uses Partitioned State Scheduling.

21

3.4 Review of Monolithic State Scheduling

In this chapter, we first presented related work, our target cluster and workload envi-
ronments, as well as a model and taxonomy of cluster scheduling.

Then, using an analytical model and a Monte Carlo simulation we observe scaling
and flexibility limitations inherent to the Monolithic State Scheduling architecture. This
conclusion is not surprising given the limitations that have been observed in existing real
world monolithic cluster scheduling systems (e.g., Hadoop).

In the next chapter, we will introduce multi-agent scheduling architectures, which aim
to address many of the scalability and flexibility limitations of Monolithic State Scheduling
discussed in this chapter.

22

Chapter 4

Partitioned State Scheduling

In this chapter, we extend our general model of cluster scheduling by moving beyond
monolithic state scheduling and introducing multi-agent scheduling, a technique for increas-
ing the scalability and flexibility of cluster scheduling by allowing scheduling decisions to
happen concurrently. We introduce one type of multi-agent scheduling called Partitioned
State Scheduling (PSS) in which Cluster State is partitioned into non-overlapping schedul-
ing domains, and discuss Mesos, a real-world system we built that implements PSS.

This chapter is organized as follows: we begin in Section 4.1 by expanding our taxonomy
to include the concept of Multi-agent Scheduling, which allows multiple scheduling decisions
to be made in parallel. Then, in Section 4.2, we look at two specific approaches to multi-
agent scheduling: statically and dynamically partitioning Cluster State. In Section 4.5, we
present definitions, metrics, and assumptions. In Section 4.6, we show that Partitioned
State Scheduling performs very well when frameworks can scale up and down elastically,
tasks durations are homogeneous, and frameworks prefer all nodes equally. In Section 4.7,
we consider the case wherein different scheduling agents prefer different machines. We
show that partitioned state scheduling can emulate a monolithic scheduler that performs
fair sharing across frameworks in terms of scheduling wait times. In Section 4.8, we show
that Mesos can handle heterogeneous task durations without impacting the performance of
frameworks with short tasks. In Section 4.9, we discuss how frameworks are incentivized
to improve their performance in PSS, and argue that these incentives also improve overall
cluster utilization.

4.1 Multi-agent Scheduling

Multi-agent scheduling is similar to monolithic scheduling as described in Section 3
except that now multiple scheduling agents can be active at a time, each independently
making task-resource assignments. In the rest of this chapter we introduce two types of
multi-agent scheduling that both work by dividing Cluster State into non-overlapping par-

23

Cluster
Scheduling

Monolithic
(Single-agent)

Multi-agent

Partitioned State
Scheduling

Statically
Partitioned

Dynamically
Partitioned

Replicated State
Scheduling

Figure 4.1: Our cluster scheduler taxonomy with Statically Partitioned State Scheduling

(SPS) and Dynamically Partitioned State Scheduling (DPS) highlighted.

titions. By dividing the resource scheduling work across multiple schedulers, partitioned
state scheduling does not suffer the scaling limitations of monolithic scheduling.

4.2 Partitioned State Scheduling

One way to achieving multi-agent scheduling is to statically partition the rows of Cluster
State into non-overlapping partitions and then, for each partition, allow at most a single
scheduling agent to edit rows in that partition. This approach can further be broken into
two sub-architectures in our taxonomy: static and dynamic partitioning of Cluster State.
Figure 4.1 shows where these architectures fit into the taxonomy we introduced in Chapter 2.

4.2.1 Statically Partitioned State Scheduling (SPS)

The most straightforward way to partition Cluster State is to have all partitions be
fixed sizes. We call this the Statically Partitioned State Scheduling (SPS) architecture. One
implementation of this architecture used by most organizations managing clusters today is
to partition the machines into “cells” either physically (e.g., via separate physical networks,
sets of racks, or perhaps even separate buildings) or virtually (e.g., via Virtual Local Area
Networks), each representing an independent scheduling domain. This partitioning may be
done in a variety of ways, and also for a variety of reasons other than purely for scheduling
scalability.

24

Job	
 Manager	
 2	

Scheduling	

Agent	

Job Queue

Job	
 Manager	
 1	

Scheduling	

Agent	

Job Queue …	
 B	
 A	

Partitioned Cell State

Scheduling
Domain 1

Scheduling
Domain 2

Multi-Agent Scheduling with Statically Partitioned Cell State

Jobs

…	
 2	
 1	

Jobs

Figure 4.2: A conceptual diagram showing Partitioned State scheduling with Statically

Partitioned Cluster State. The dotted line in cluster state represents the division of rows

into two static, non-overlapping scheduling domains, one for each scheduling agent.

Identical sub-cells (for scale and isolation). Many organizations large enough to run
jobs on thousands of machines run many small “cells” each with their own scheduler. This,
for example, is how Yahoo runs Hadoop. Some of the advantages of statically partitioned
cells are low scheduling decision time latency because of parallelism and improved fault and
performance isolation. For example, there is no single point of failure and there is less head
of line blocking.

However, there are disadvantages. Jobs that are too big to fit into a single partition
simply cannot run, even if there are enough resources globally. Additionally, it is difficult
for small organizational sub-units to get a partition assigned to them. It may take days or
weeks for resources to get assigned through manual processes. Finally, this approach leads
to fragmentation internal to the static partitions and low resource utilization.

4.2.2 Dynamically Partitioned State Scheduling (DPS)

To overcome many of the disadvantages of statically partitioning cluster state that we
discussed above, we can allow scheduling domains to be resized dynamically. For example,
if one scheduling domain partition is allowed to grow to be the size of the entire cluster,
which would imply all other partitions can shrink down to be the null subset of cluster
state, this can allow a cluster to support job whose tasks require the all of the resources in
the cluster.

25

Job	
 Manager	
 2	

Scheduling	

Agent	

Job Queue

Job	
 Manager	
 1	

Scheduling	

Agent	

Job Queue
Cell State
dynamically
re-partitioned by
Meta-Scheduling
Agent

Meta-Scheduling Agent

Multi-Agent Scheduling with Dynamically Partitioned Cell State

…	
 B	
 A	

Jobs

…	
 2	
 1	

Jobs

Scheduling
Domain 1

Scheduling
Domain 2

Figure 4.3: A conceptual diagram showing Partitioned State scheduling with Dynamically

Partitioned Cluster State. The meta-scheduling agent is responsible for resizing the non-

overlapping scheduling domains according to a meta-scheduling policy.

Meta-scheduling

However, dynamically resizing scheduling state partitions requires a second, or meta,
level of scheduling to make the decision about the size of each partition over time. We call
this concept, which is not new to this research, meta-scheduling. In our model, we call the
entity that contains and enforces the meta-scheduling policies the meta-scheduling agent.

Compared to database concurrency control. Since cluster state can be seen as a
database table, one way of reasoning about cluster state partitioning is to view the inter-
actions between scheduling agents and cluster state as acquiring and releasing read and
write locks on. For example, partitioning cluster state can be seen as each scheduling agent
taking a write lock on the rows of cluster state that represent the machines in its scheduling
domain partition. This would prevent other scheduling agents from reading or writing that
row. However, unlike in typical applications for which databases are used, in which write
locks are acquired for relatively short periods of time to update the data contained in the
row, write locks on rows in cluster state represent control of physical resources which can
then be used to run jobs. This distinction explains why little research has been done in
the database community on the topic of policies for controlling the size or duration of write
locks taken by different database clients, e.g., to enforce fairness or priority levels, whereas
in the case of sharing cluster resources these policies are very important. The existence
of these policies are the difference between “meta scheduling” in the context of clusters
scheduling and classical concurrency control research.

26

DPS with Resource Offers

While one could envision the Job Managers attempting to take pessimistic locks on
partitions of cluster state in a “pull” fashion, in this work we focus on an implementation
of DPS in which the meta-scheduling agent actively decides how to partition cluster state
according to some central sharing policy and then actively “pushes” updates about the
partitions out to scheduling agents. We call this Mesos-style DPS, as this is the implemen-
tation we chose to use in the Mesos scheduling system, which we will discuss shortly. In
Mesos, these updates are called resource offers. See Section 5.2.2 for a full description and
discussion about resource offers.

4.3 Monte Carlo DPS Simulation

We modified our Monte Carlo simulator to evalute Mesos-style DPS cluster scheduling.
Our setup here is parallel to our setup of Monte Carlo simulations of MSS in Section 3.2.
We are still simulating one scheduler handling service jobs and one handling batch jobs.

To simulate DPS, we added a meta-scheduling agent (or resource allocator) to the
simulation framework. The resource allocator can make offers to frameworks as soon as
resources free up, even if the scheduler is in the middle of making a scheduling decision, but
to keep things simple, we assumed that a scheduler would only look at the set of resources
that were available to it when it begins a scheduling attempt for a job (i.e., offers that arrive
during the attempt are ignored). Resources that are not used at the end of scheduling a
job are returned to the allocator; they may be re-offered back to the framework if it is the
one furthest below its fair share.

Since we are now using two schedulers, we keep the decision time for the batch scheduler
constant, and vary the decision time for the service scheduler by adjusting job timeservice.
(We chose to vary the service scheduler decision times because we were particularly inter-
ested in the effects of long service scheduling decisions.) As expected, the utilization graphs
for the schedulers (Figure 4.4b) look very similar to those of the monolithic multi-path case,
because the centralized resource allocator’s DRF algorithm is quite fast (we assumed it took
1ms to make a resource offer).

4.4 Analyzing Mesos DPS Behavior

In this section, we further study the behavior of Mesos’s implementation of the DPS
architecture under a variety of cluster workloads varying in characteristics such as task
duration distribution, job elasticity, and job pickiness.

Our goal is not to develop an exact model of the system, but to provide a coarse
understanding of its behavior, to further characterize the environments in which Mesos
style DPS works well.

27

10ms 0.1s 1s 10s 100s
10ms

1s

1m

1h

1d
A
B
C

(a) Job wait time.

10ms 0.1s 1s 10s 100s
0.0

0.2

0.4

0.6

0.8

1.0
A
B
C

(b) Scheduler utilization.

Figure 4.4: Two-level scheduling (Mesos): performance as a function of job timeservice for

clusters A, B, and C (see Table 3.1 for description of each cluster).

4.5 Definitions, Metrics and Assumptions

In the following discussion, we consider three metrics:

• Framework ramp-up time: time it takes a new framework to achieve its allocation
(e.g., fair share);

• Job completion time: time it takes a job to complete, assuming one job per framework;

• System utilization: total cluster utilization.

We characterize workloads along two dimensions: elasticity and task duration distribution.
An elastic framework, such as Hadoop and Dryad, can scale its resources up and down,
i.e., it can start making progress as soon as its first task is assigned to a node, and as its
tasks finish, the nodes they occupy can be released. In contrast, a rigid framework, such
as MPI, can start running its jobs only after it has acquired a fixed quantity of resources,
and cannot scale up dynamically to take advantage of new resources or scale down without
a large impact on performance. For task durations, we consider both homogeneous and
heterogeneous distributions.

We also differentiate between two types of resources: mandatory and preferred. A
resource is mandatory if a framework must acquire it to run. For example, a graphical
processing unit (GPU) is mandatory if a framework cannot run without access to GPU.
In contrast, a resource is preferred if a framework performs “better” using it, but can also
run using another equivalent resource. For example, a framework may prefer running on a
node that locally stores its data, but may also be able to read the data remotely if it must.

We assume the amount of mandatory resources requested by a framework never ex-
ceeds its guaranteed share. This ensures that frameworks will not deadlock waiting for the

28

Elastic Framework Rigid Framework

Constant dist. Exponential dist. Constant dist. Exponential dist.

Ramp-up time T T ln k T T ln k

Completion time (1/2 + β)T (1 + β)T (1 + β)T (ln k + β)T

Utilization 1 1 β/(1/2 + β) β/(ln k − 1 + β)

Table 4.1: Ramp-up time, job completion time and utilization for both elastic and rigid

frameworks, and for both constant and exponential task duration distributions. The frame-

work starts with no slots. k is the number of slots the framework is entitled to under the

scheduling policy, and βT represents the time it takes a job to complete assuming the frame-

work gets all k slots at once.

mandatory resources to become free.1 For simplicity, we also assume that all tasks have the
same resource demands and run on identical slices of machines called slots, and that each
framework runs a single job.

4.6 Homogeneous Tasks

We consider a cluster with n slots and a framework, f , that is entitled to k slots. For
the purpose of this analysis, we consider two distributions of the task durations: constant
(i.e., all tasks have the same length) and exponential. Let the mean task duration be T ,
and assume that framework f runs a job which requires βkT total computation time. That
is, when the framework has k slots, it takes its job βT time to finish.

Table 4.1 summarizes the job completion times and system utilization for the two types
of frameworks and the two types of task length distributions. As expected, elastic frame-
works with constant task durations perform the best, while rigid frameworks with exponen-
tial task duration perform the worst.

4.6.1 Elastic Frameworks

An elastic framework can opportunistically use any slot offered by Mesos, and can
relinquish slots without significantly impacting the performance of its jobs. We assume
there are exactly k slots in the system that framework f prefers, and that f waits for these
slots to become available to reach its allocation.

1In workloads where the sum of the mandatory resource demands of the active frameworks can exceed
the capacity of the cluster, the allocation module needs to implement admission control.

29

Framework ramp-up time. If task durations are constant, it will take framework f at
most Ts time to acquire k slots. This is simply because during a Ts interval, every slot will
become available, which will enable Mesos to offer the framework all its k preferred slots.

If the duration distribution is exponential, the expected ramp-up time is Ts ln k. The
framework needs to wait on average Ts/k to acquire the first slot from the set of its k
preferred slots, Ts/(k − 1) to acquire the second slot from the remaining k − 1 slots in the
set, and Ts to acquire the last slot. Thus, the ramp-up time of f is

Ts × (1 + 1/2..+ 1/k) ' Ts ln k. (4.1)

Job completion time. Recall that βTs is the completion time of the job in an ideal
scenario in which the frameworks acquires all its k slots instantaneously. If task durations
are constant, the completion time is on average (1/2 + β)Ts. To show this, assume the
starting and the ending times of the tasks are uniformly distributed, i.e., during the ramp-
up phase, f acquires one slot every Ts/k on average. Thus, the framework’s job can use
roughly Tsk/2 computation time during the first Ts interval. Once the framework acquires
its k slots, it will take the job (βkTs − Tsk/2)/k = (β − 1/2)Ts time to complete. As a
result the job completion time is Ts + (β − 1/2)Ts = (1/2 + β)Ts (see Table 4.1).

In the case of the exponential distribution, the expected completion time of the job is
Ts(1 + β) (see Table 4.1). Consider the ideal scenario in which the framework acquires all
k slots instantaneously. Next, we compute how much computation time does the job “lose”
during the ramp up phase compared to this ideal scenario. While the framework waits Ts/k
to acquire the first slot, in the ideal scenario the job would have been already used each of
the k slots for a total of k×Ts/k = Ts time. Similarly, while the framework waits Ts/(k−1)
to acquire the second slot, in the ideal scenario the job would have been used the k−1 slots
(still to be allocated) for another (k − 1)×Ts/(k − 1) = Ts time. In general, the framework
loses Ts computation time while waiting to acquire each slot, and a total of kTs computation
time during the entire ramp-up phase. To account for this loss, the framework needs to use
all k slots for an additional Ts time, which increases the expected job completion time by
Ts to (1 + β)Ts.

System utilization. As long as frameworks can scale up and down and there is enough
demand in the system, the cluster will be fully utilized.

4.6.2 Rigid Frameworks

Some frameworks may not be able to start running jobs unless they reach a minimum
allocation. One example is MPI, where all tasks must start a computation in sync. In
this section we consider the worst case where the minimum allocation constraint equals the
framework’s full allocation, i.e., k slots.

Job completion time. While in this case the ramp-up time remains unchanged, the job
completion time will change because the framework cannot use any slot before reaching its
full allocation. If the task duration distribution is constant the completion time is simply

30

T (1 + β), as the framework doesn’t use any slot during the first T interval, i.e., until
it acquires all k slots. If the distribution is exponential, the completion time becomes
T (ln k + β) as it takes the framework T ln k to ramp up (see Eq. 4.1).

System utilization. Wasting allocated slots has also a negative impact on the utilization.
If the task duration is constant, and the framework acquires a slot every T/k on average, the
framework will waste roughly Tk/2 computation time during the ramp-up phase. Once it
acquires all slots, the framework will use βkT to complete its job. The utilization achieved
by the framework in this case is then βkT/(kT/2 +βkT) ' β/(1/2 +β). If the distribution
is exponential, the utilization is β/(ln k − 1 + β) (see [30] for full derivation).[e]

If the task distribution is exponential, the expected computation time wasted by the
framework is T (k ln(k − 1) − (k − 1)). The framework acquires the first slot after waiting
T/k, the second slot after waiting T/(k − 1), and the last slot after waiting T time. Since
the framework does not use a slot before acquiring all of them, it follows that the first
acquired slot is idle for

∑k−1
i=1 T/i, the second slot is idle for

∑k−2
i=1 T/i, and the next to last

slot is idle for T time. As a result, the expected computation time wasted by the framework
during the ramp-up phase is

T ×
∑k−1

i=1
i

k−i =

T ×
∑k−1

i=1

(
k

k−i − 1
)

=

T × k ×
∑k−1

i=1
1

k−i − T × (k − 1) '
T × k × ln(k − 1)− T × (k − 1) '
T × (k ln(k − 1)− (k − 1))

Assuming k � 1, the utilization achieved by the framework is βkT/((k ln(k− 1)− (k−
1))T + βkT) ' β/(ln k − 1 + β) (see Table 4.1).

4.7 Placement Preferences

So far, we have assumed that frameworks have no slot preferences. In practice, different
frameworks prefer different nodes and their preferences may change over time. In this
section, we consider the case where frameworks have different preferred slots.

The natural question is how well Mesos will work compared to a monolithic scheduler
whose scheduling agent has full information about framework preferences. We consider two
cases: (a) there exists a system configuration in which each framework gets all its preferred
slots and achieves its full allocation, and (b) there is no such configuration, i.e., the demand
for some preferred slots exceeds the supply.

In the first case, it is easy to see that, irrespective of the initial configuration, the system
will converge to the state where each framework allocates its preferred slots after at most
one T interval. This is simple because during a T interval all slots become available, and
as a result each framework will be offered its preferred slots.

In the second case, there is no configuration in which all frameworks can satisfy their
preferences. The key question in this case is how should one allocate the preferred slots
across the frameworks demanding them. In particular, assume there are p slots preferred

31

by m frameworks, where framework i requests ri such slots, and
∑m

i=1 ri > x. While
many allocation policies are possible, here we consider a weighted fair allocation policy
where the weight associated with framework i is its intended total allocation, si. In other
words, assuming that each framework has enough demand, we aim to allocate p·si/(

∑m
i=1 si)

preferred slots to framework i.

The challenge in Mesos is that the scheduler does not know the preferences of each
framework. Fortunately, it turns out that there is an easy way to achieve the weighted
allocation of the preferred slots described above: simply perform lottery scheduling [46],
offering slots to frameworks with probabilities proportional to their intended allocations.
In particular, when a slot becomes available, Mesos can offer that slot to framework i
with probability si/(

∑n
i=1 si), where n is the total number of frameworks in the system.

Furthermore, because each framework i receives on average si slots every T time units, the
results for ramp-up times and completion times in Section 4.6 still hold.

4.8 Heterogeneous Tasks

So far we have assumed that frameworks have homogeneous task duration distributions,
i.e., that all frameworks have the same task duration distribution. In this section, we discuss
frameworks with heterogeneous task duration distributions. In particular, we consider a
workload where tasks are either short or long, where the mean duration of the long tasks
is significantly longer than the mean of the short tasks. Such heterogeneous workloads can
hurt frameworks with short tasks. In the worst case, all nodes required by a short job might
be filled with long tasks, so the job may need to wait a long time (relative to its execution
time) to acquire resources.

We note first that random task assignment can work well if the fraction φ of long tasks
is not very close to 1 and if each node supports multiple slots. For example, in a cluster with
S slots per node, the probability that a node is filled with long tasks will be φS . When S is
large (e.g., in the case of multicore machines), this probability is small even with φ > 0.5.
If S = 8 and φ = 0.5, for example, the probability that a node is filled with long tasks is
0.4%. Thus, a framework with short tasks can still acquire some preferred slots in a short
period of time. In addition, the more slots a framework is able to use, the likelier it is that
at least k of them are running short tasks.

To further alleviate the impact of long tasks, Mesos can be extended slightly to allow
allocation policies to reserve some resources on each node for short tasks. In particular,
we can associate a maximum task duration with some of the resources on each node, after
which tasks running on those resources are killed. These time limits can be exposed to the
frameworks in resource offers, allowing them to choose whether to use these resources. This
scheme is similar to the common policy of having a separate queue for short jobs in HPC
clusters.

32

4.9 Framework Incentives

Mesos implements a multi-agent scheduling model, where each framework decides which
offers to accept. In such a system, it is important to understand the incentives of entities
in the system. In this section, we discuss the incentives of frameworks (and their users) to
improve the response times of their jobs.

Short tasks: A framework is incentivized to use short tasks for two reasons. First, it
will be able to allocate any resources reserved for short slots. Second, using small tasks
minimizes the wasted work if the framework loses a task, either due to revocation or simply
due to failures.

Scale elastically: The ability of a framework to use resources as soon as it acquires
them—instead of waiting to reach a given minimum allocation—would allow the framework
to start (and complete) its jobs earlier. In addition, the ability to scale up and down allows
a framework to grab unused resources opportunistically, as it can later release them with
little negative impact.

Do not accept unknown resources: Frameworks are incentivized not to accept re-
sources that they cannot use because most allocation policies will count all the resources
that a framework owns when making offers.

We note that these incentives align well with our goal of improving utilization. If
frameworks use short tasks, Mesos can reallocate resources quickly between them, reducing
latency for new jobs and wasted work for revocation. If frameworks are elastic, they will
opportunistically utilize all the resources they can obtain. Finally, if frameworks do not
accept resources that they do not understand, they will leave them for frameworks that do.

We also note that these properties are met by many current cluster computing frame-
works, such as MapReduce and Dryad, simply because using short independent tasks sim-
plifies load balancing and fault recovery.

4.10 Limitations of Partitioned State Scheduling

Although we have shown that partitioned state scheduling works well in a range of
workloads relevant to current cluster environments, because scheduling agents often operate
over a strict subset of cluster state, their scheduling decisions may be less optimal than that
of a scheduling agent in monolithic state scheduling. We have identified three limitations
of the partitioned state scheduling architecture:

Fragmentation: When tasks have heterogeneous resource demands, a distributed col-
lection of frameworks may not be able to optimize bin packing as well as a centralized
scheduler. However, note that the wasted space due to suboptimal bin packing is bounded
by the ratio between the largest task size and the node size. Therefore, clusters running

33

“larger” nodes (e.g., multicore nodes) and “smaller” tasks within those nodes will achieve
high utilization even with distributed scheduling.

There is another possible bad outcome if allocation modules reallocate resources in a
näıve manner: when a cluster is filled by tasks with small resource requirements, a frame-
work f with large resource requirements may starve, because whenever a small task finishes,
f cannot accept the resources freed by it, but other frameworks can. To accommodate
frameworks with large per-task resource requirements, allocation modules can support a
minimum offer size on each slave, and abstain from offering resources on the slave until
this amount is free.

Interdependent framework constraints: It is possible to construct scenarios where,
because of esoteric interdependencies between frameworks (e.g., certain tasks from two
frameworks cannot be colocated), only a single global allocation of the cluster performs well.
We argue such scenarios are rare in practice. In the model discussed in this section, where
frameworks only have preferences over which nodes they use, we showed that allocations
approximate those of optimal schedulers.

Framework complexity: Using resource offers may make framework scheduling more
complex. We argue, however, that this difficulty is not onerous. First, whether using Mesos
or a centralized scheduler, frameworks need to know their preferences; in a centralized
scheduler, the framework needs to express them to the scheduler, whereas in Mesos, it must
use them to decide which offers to accept. Second, many scheduling policies for existing
frameworks are online algorithms, because frameworks cannot predict task times and must
be able to handle failures and stragglers [24, 48, 51]. These policies are easy to implement
over resource offers.

4.11 Partitioned State Scheduling Chapter Summary

In this chapter we have presented Partitioned State Scheduling, an approach to multi-
agent cluster scheduling that overcomes the scaling and flexibility limitations inherent to
Monolithic State Scheduling. We began by discussing the widely adopted technique of
statically partitioning cluster state across scheduling agents (SPS), and then introduced
Dynamically Partitioned State Scheduling (DPS), in which a centralized scheduling agent
adjusts the size of the scheduling domain partitions on the fly. Finally, we analyzed the
expected performance of DPS for our target workloads using both a Monte Carlo simulation
and statistical models based on simplifying assumptions about workload parameters.

34

Chapter 5

Mesos, a Dynamically Partitioned

State Scheduler

In this chapter, we further present and evaluate Mesos, a real-world implementation of
DPS. Mesos scales to clusters of tens of thousands of machines, provides increased framework
development flexibility, as well as increased resource utilization.

We begin in Section 5.1 by introducing Mesos and mapping the components of Mesos
to the general model for cluster scheduling introduced in Section 2.3, and summarizing the
design goals of Mesos. In Sections 5.2, and 5.3, we present details of the design philosophy,
architecture, and implementation of Mesos. Then, in Section 5.4, we describe our imple-
mentation of several actual Job Managers (i.e., Mesos “Frameworks”) that run on Mesos.
Finally, in Section 5.5, we describe the experiments we ran to evaluate Mesos in action and
present the results.

5.1 Mesos Background and Goals

Mesos was originally conceived after observing Hadoop’s use of the Monolithic State
Scheduling architecture. Specifically, Hadoop suffered scalability and reliability limitations
associated with its Monolithic State Scheduling architecture. For example, Hadoop users
frequently complained that a buggy MapReduce job could crash the Hadoop master causing
all of the jobs being managed by the master to be lost.

In response to these observations, we originally designed Mesos to provide a number of
benefits to practitioners who are used to running Hadoop clusters.

First, even organizations that only use one framework, such as Hadoop, can use Mesos to
run multiple instances or multiple versions of that framework in the same cluster. Engineers

35

at Yahoo! and Facebook indicated that this would be a compelling way to isolate production
and experimental Hadoop workloads and to roll out new versions of Hadoop [12, 13].

Second, Mesos makes it easier to develop and immediately experiment with new frame-
works. The ability to share resources across multiple frameworks frees the developers to
build and run specialized frameworks targeted at particular problem domains rather than
one-size-fits-all abstractions. Frameworks can therefore evolve faster and provide better
support for each problem domain.

5.1.1 Dynamically Partitioned Scheduling in Mesos

Mesos implements the DPS architecture. In Mesos we call job managers frameworks,
and the functionality of the meta-scheduling agent is performed by the Mesos master.

5.1.2 Goals of Mesos

We can summarize the design goals for the initial version of Mesos as follows:

• Support and demonstrate multi-agent scheduling

• Support fair-sharing meta-scheduling policy

• Increase overall cluster utilization

• Scale to tens of thousands of machines and hundreds of jobs

5.2 Mesos Architecture

In this section, we begin by discussing our design philosophy for Mesos. We then
describe the components of Mesos, our resource allocation mechanisms, and how Mesos
achieves isolation, scalability, and fault tolerance.

5.2.1 Design Philosophy

Mesos aims to provide a scalable and resilient core for enabling various frameworks to
efficiently share clusters. Because cluster frameworks are both highly diverse and rapidly
evolving, our overriding design philosophy has been to define a minimal interface that
enables efficient resource sharing across frameworks, and otherwise push control of task
scheduling and execution to the frameworks. Pushing control to the frameworks has two
benefits. First, it allows frameworks to implement diverse approaches to various scheduling
concerns in the cluster, such as achieving data locality and dealing with faults. It also
allows frameworks to evolve these solutions independently. Second, it keeps Mesos simple
and minimizes the rate of change required of the system, which makes it easier to keep
Mesos scalable and robust.

36

Mesos slave Mesos slave Mesos slave
MPI

executor

task

Hadoop
executor

task

MPI
executor

task task

Hadoop
executor

task task

Mesos
master

Hadoop
scheduler

MPI
scheduler

Standby
master

Standby
master

ZooKeeper
quorum

Figure 5.1: Mesos architecture diagram, showing two running frameworks (Hadoop and

MPI).

Although Mesos provides a low-level interface, we expect higher-level libraries imple-
menting common functionality, such as fault tolerance, to be built on top of it. These
libraries would be analogous to library OSes in the exokernel [26]. Putting this functional-
ity in libraries rather than in Mesos allows Mesos to remain small and flexible, and lets the
libraries evolve independently.

5.2.2 Architecture Overview

Figure 5.1 shows the main components of Mesos. Mesos consists of a master process
that manages slave daemons running on each cluster node, and frameworks that run tasks
on these slaves.

The master implements fine-grained sharing across frameworks using resource offers.
Each resource offer is a list of free resources on multiple slaves. The master decides how
many resources to offer to each framework according to an organizational policy, such as fair
sharing or priority. To support a diverse set of inter-framework allocation policies, Mesos
lets organizations define their own policies via a pluggable allocation module.

Each framework running on Mesos consists of two components: a scheduler that registers
with the master to be offered resources, and an executor process that is launched on slave

37

FW Scheduler
Job 1 Job 2
Framework 1

Allocation
module

Mesos
master

<s1, 4cpu, 4gb, … > 1 <fw1, task1, 2cpu, 1gb, … >
<fw1, task2, 1cpu, 2gb, … > 4

Slave 1

Task
Executor

Task

FW Scheduler
Job 1 Job 2
Framework 2

Task
Executor

Task

Slave 2

<s1, 4cpu, 4gb, … >
<task1, s1, 2cpu, 1gb, … >
<task2, s1, 1cpu, 2gb, … > 3 2

Figure 5.2: Resource offer example.

nodes to run the framework’s tasks. While the master determines how many resources to
offer to each framework, the frameworks’ schedulers select which of the offered resources to
use. When a framework accepts offered resources, it passes Mesos a description of the tasks
it wants to launch on them.

Figure 5.2 shows an example of how a framework gets scheduled to run tasks. In
Step (1), Slave 1 reports to the Master that it has 4 CPUs and 4 GB of memory free.
The Master then invokes the allocation module, which tells it that Framework 1 should be
offered all available resources. In Step (2), the Master sends a resource offer describing these
resources to Framework 1. In Step (3), Framework 1’s scheduler replies to the Master with
information about two tasks to run on the Slave, using 〈2 CPUs, 1 GB RAM〉 for the first
task, and 〈1 CPUs, 2 GB RAM〉 for the second task. Finally, in Step (4), the Master sends
the tasks to the Slave, which allocates appropriate resources to the framework’s executor,
which in turn launches the two tasks (depicted with dotted borders). Because 1 CPU and
1 GB of RAM are still free, the allocation module may now offer them to framework 2. In
addition, this resource offer process repeats when tasks finish and new resources become
free.

To maintain a narrow interface and enable frameworks to evolve independently, Mesos
does not require frameworks to specify their resource requirements or constraints. Instead,
Mesos gives frameworks the ability to reject offers. A framework can reject resources that do
not satisfy its constraints to wait for ones that do. Thus, the rejection mechanism enables
frameworks to support arbitrarily complex resource constraints while keeping Mesos simple
and scalable.

One potential challenge with solely using the rejection mechanism to satisfy all frame-
work constraints is efficiency: a framework may have to wait a long time before it receives
an offer satisfying its constraints, and Mesos may have to send an offer to many frame-
works before one of them accepts it. To avoid this, Mesos also allows frameworks to set

38

filters, which are Boolean predicates specifying that a framework will always reject certain
resources. For example, a framework might specify a blacklist of nodes it can not run on.

There are two points worth noting. First, filters represent just a performance optimiza-
tion for the resource offer model, as the frameworks still have the ultimate control to reject
any resources that they cannot express filters for and to choose which tasks to run on each
node. Second, as we will show in this paper, when the workload consists of fine-grained
tasks, such as those in typical MapReduce and Dryad jobs, the resource offer model per-
forms surprisingly well even in the absence of filters. In particular, we have found that a
simple policy called delay scheduling [48], in which frameworks wait for a limited time to
acquire nodes storing their data, yields nearly optimal data locality with a wait time of
1-5s.

In the rest of this section, we describe how Mesos performs two key functions: resource
allocation (§5.2.3) and resource isolation (§5.2.4). We then describe filters and several other
mechanisms that make resource offers scalable and robust (§5.2.5). Finally, we discuss fault
tolerance in Mesos (§5.2.6) and summarize the Mesos API (§5.2.8).

5.2.3 Resource Allocation

Mesos delegates allocation decisions to a pluggable allocation module, so that organi-
zations can tailor allocation to their needs. So far, we have implemented two allocation
modules: one that performs fair sharing based on a generalization of max-min fairness for
multiple resources [27] and one that implements strict priorities. Similar policies are used
in Hadoop and Dryad [32, 48].

In normal operation, Mesos takes advantage of the fact that most tasks are short, and
only reallocates resources when tasks finish. This usually happens frequently enough so
that new frameworks acquire their share quickly. For example, if a framework’s share is
10% of the cluster, it needs to wait approximately 10% of the mean task length to receive
its share.

We leave it up to the allocation module to select the policy for revoking tasks, but
describe two related mechanisms here. First, while killing a task has a low impact on
many frameworks, such as MapReduce, it is harmful for frameworks with interdependent
tasks, such as MPI. We allow these frameworks to avoid being killed by letting allocation
modules expose a guaranteed allocation to each framework—a quantity of resources that the
framework may hold without losing tasks. Frameworks read their guaranteed allocations
through an API call. Allocation modules are responsible for ensuring that the guaranteed
allocations they provide can all be met concurrently. For now, we have kept the semantics
of guaranteed allocations simple: if a framework is below its guaranteed allocation, none of
its tasks should be killed, and if it is above, any of its tasks may be killed.

Second, to decide when to trigger revocation, Mesos must know which of the connected
frameworks would use more resources if they were offered them. Frameworks indicate their
interest in offers through an API call.

39

5.2.4 Isolation

Mesos provides performance isolation between framework executors running on the same
slave by leveraging existing OS isolation mechanisms. Since these mechanisms are platform-
dependent, we support multiple isolation mechanisms through pluggable isolation modules.

We currently isolate resources using OS container technologies, specifically Linux Con-
tainers [10] and Solaris Projects [16]. These technologies can limit the CPU, memory, net-
work bandwidth, and—in new Linux kernels—I/O usage of a process tree. These isolation
technologies are not perfect, but using containers is already an advantage over frameworks
like Hadoop, where tasks from different jobs simply run in separate processes.

5.2.5 Making Resource Offers Scalable and Robust

Because task scheduling in Mesos is a distributed process, it needs to be efficient and
robust to failures. Mesos includes three mechanisms to help with this goal.

First, because some frameworks will always reject certain resources, Mesos lets them
short-circuit the rejection process and avoid communication by providing filters to the
master. We currently support two types of filters: “only offer nodes from list L” and “only
offer nodes with at least R resources free”. However, other types of predicates could also
be supported. Note that unlike generic constraint languages, filters are Boolean predicates
that specify whether a framework will reject one bundle of resources on one node, so they
can be evaluated quickly on the master. Any resource that does not pass a framework’s
filter is treated exactly like a rejected resource.

Second, because a framework may take time to respond to an offer, Mesos counts re-
sources offered to a framework towards its allocation of the cluster. This is a strong incentive
for frameworks to respond to offers quickly and to filter resources that they cannot use.

Third, if a framework has not responded to an offer for a sufficiently long time, Mesos
rescinds the offer and re-offers the resources to other frameworks.

5.2.6 Fault Tolerance

Since all the frameworks depend on the Mesos master, it is critical to make the master
fault-tolerant. To achieve this, we have designed the master to be soft state, so that a new
master can completely reconstruct its internal state from information held by the slaves and
the framework schedulers. In particular, the master’s only state is the list of active slaves,
active frameworks, and running tasks. This information is sufficient to compute how many
resources each framework is using and run the allocation policy. We run multiple masters
in a hot-standby configuration using ZooKeeper [4] for leader election. When the active
master fails, the slaves and schedulers connect to the next elected master and repopulate
its state.

Aside from handling master failures, Mesos reports node failures and executor crashes
to frameworks’ schedulers. Frameworks can then react to these failures using the policies
of their choice.

40

Scheduler Callbacks

resourceOffer(offerId, offers)
offerRescinded(offerId)
statusUpdate(taskId, status)
slaveLost(slaveId)

Executor Callbacks

launchTask(taskDescriptor)
killTask(taskId)

Executor Actions

sendStatus(taskId, status)

Scheduler Actions

replyToOffer(offerId, tasks)
setNeedsOffers(bool)
setFilters(filters)
getGuaranteedShare()
killTask(taskId)

Table 5.1: Mesos API functions for schedulers and executors.

Finally, to deal with scheduler failures, Mesos allows a framework to register multiple
schedulers such that when one fails, another one is notified by the Mesos master to take
over. Frameworks must use their own mechanisms to share state between their schedulers.

5.2.7 Communication and Storage

The Mesos architecture does not impose any storage or communication abstractions on
frameworks. Following our minimalist design philosophy, we wish to let frameworks choose
their own abstractions, and to let these abstractions evolve independently of Mesos. In a
typical installation, we expect that data will be shared through a cluster file system such
as HDFS [2].

5.2.8 API Summary

Table 5.1 summarizes the Mesos API. The “callback” columns list functions that frame-
works must implement, while “actions” are operations that they can invoke.

5.3 Mesos Implementation

We have implemented Mesos in about 10,000 lines of C++. The system runs on Linux,
Solaris and OS X, and supports frameworks written in C++, Java, and Python.

To reduce the complexity of our implementation, we use a C++ library called libprocess

[8] that provides an actor-based programming model using efficient asynchronous I/O mech-
anisms (epoll, kqueue, etc). We also use ZooKeeper [4] to perform leader election.

Mesos can use Linux containers [10] or Solaris projects [16] to isolate tasks. We currently
isolate CPU cores and memory. We plan to leverage recently added support for network
and I/O isolation in Linux [9] in the future.

We have implemented four frameworks on top of Mesos. First, we have ported three

41

existing cluster computing systems: Hadoop [2], the Torque resource scheduler [43], and
the MPICH2 implementation of MPI [21]. None of these ports required changing these
frameworks’ APIs, so all of them can run unmodified user programs. In addition, a team
at UC Berkeley wrote a specialized framework for iterative jobs on top of Mesos called
Spark[49, 50], which we use in our evaluation of Mesos and provide an overview of in
Section 5.4.4.

A benefit of using C/C++ to implement Mesos is easily interoperability with other
languages. In particular, we originally used the Simplified Wrapper and Interface Generator
(SWIG) to easily generate interfaces and bindings in Python, and Java. We have since
migrated to using the Java and Python native language interfaces to provide the same
functionality.

5.3.1 Executor Isolation

Recall from Section 5.2.4, that a good isolation mechanism for Mesos should (a) have
low overheads for executor startup and task execution and (b) have the ability to let Mesos
change resource allocations dynamically.

Given those constraints, we present possible mechanisms below:

Processes and ulimit Using processes as the “container” for isolation is appealing be-
cause processes are a lightweight and portable mechanism. However, ulimit and setrlimit

alone are insufficient for providing aggregate resource limits across process trees (e.g., a pro-
cess and all of its descendants).

Virtual Machines Virtual machines are an appealing container, however, virtualization
imposes I/O overheads [22] that may not be acceptable for data-intensive applications like
MapReduce. In addition, VMs take a fairly long time to start up, increasing latency for
short lived executors.

Cpusets, Containers, Zones, etc. Modern operating systems are beginning to provide
mechanisms to isolate entire process trees. For example, Linux supports cpusets and cgroups
for CPU isolation [17], and Linux containers [10] are aimed to provide more comprehensive
isolation. These mechanisms tend to be very lightweight and are dynamically configurable
while a process is running (similar to ulimit and setrlimit).

For our current implementation, we support Linux containers, Linux processes, or So-
laris resource management mechanisms [16]. Solaris provides a relatively advanced set of
mechanisms for resource isolation, which allows, for example, one to set cumulative limits
on CPU share, resident set size, and OS objects such as threads, on a process tree. A nice
property of the Solaris mechanisms is that one can configure, at least for some resources,
the ability to let idle resources get used by processes that have reached their limits.

As operating system isolation mechanisms improve, they should only strengthen the
performance isolation guarantees that Mesos can provide. We explore how well our current
isolation mechanisms work in Section 5.5.

42

5.4 Mesos Frameworks

5.4.1 Hadoop Port

Porting Hadoop to run on Mesos required relatively few modifications, because Hadoop’s
fine-grained map and reduce tasks map cleanly to Mesos tasks. In addition, the Hadoop
master, known as the JobTracker, and Hadoop slaves, known as TaskTrackers, fit naturally
into the Mesos model as a framework scheduler and executor.

To add support for running Hadoop on Mesos, we took advantage of the fact that
Hadoop already has a pluggable API for writing job schedulers. We wrote a Hadoop sched-
uler that connects to Mesos, launches TaskTrackers as its executors, and maps each Hadoop
task to a Mesos task. When there are unlaunched tasks in Hadoop, our scheduler first starts
Mesos tasks on the nodes of the cluster that it wants to use, and then sends the Hadoop
tasks to them using Hadoop’s existing internal interfaces. When tasks finish, our executor
notifies Mesos by listening for task finish events using an API in the TaskTracker.

We used delay scheduling [48] to achieve data locality by waiting for slots on the nodes
that contain task input data. In addition, our approach allowed us to reuse Hadoop’s exist-
ing logic for re-scheduling of failed tasks and for speculative execution (straggler mitigation).

We also needed to change how map output data is served to reduce tasks. Hadoop
normally writes map output files to the local filesystem, then serves these to reduce tasks
using an HTTP server included in the TaskTracker. However, the TaskTracker within Mesos
runs as an executor, which may be terminated if it is not running tasks. This would make
map output files unavailable to reduce tasks. We solved this problem by providing a shared
file server on each node in the cluster to serve local files. Such a service is useful beyond
Hadoop, to other frameworks that write data locally on each node.

In total, our Hadoop port is 1500 lines of code.

5.4.2 MPI Port

MPI is a language-independent message-passing API used to implement parallel pro-
grams on supercomputers and clusters. We ported the popular MPICH2 [21] implementa-
tion of MPI to run on Mesos.

MPICH2 is normally implemented as a ring of intercommunicating daemons that run
on the cluster nodes. Users invoke a utility called mpiexec to submit a program to the
daemons, specifying the number of nodes required. Rather than make invasive changes to
MPICH2, we created a Mesos framework, written in 200 lines of Python code. that acts as
a “wrapper” around mpiexec that registers with the Mesos master, dynamically launches
an MPICH2 daemon ring of the appropriate size, and runs the standard mpiexec to submit
the job to these daemons. Our application accepts resource offers until it has enough of
them to set up a daemon ring, then executes MPICH2 daemons in its tasks. These daemons
in turn execute the user’s application.

Note that because MPI uses the MPI daemons to launch more processes, nothing extra
needs to be done to ensure subsequently launched processes on the slaves will be properly

43

isolated. The simplicity of this approach is a direct consequence of how the majority of
MPI jobs are executed – a job is given a static number of nodes for its entire duration.
Since few MPI jobs fork and launch more parallel processes dynamically, we choose not to
provide any mechanism for doing so, and we implemented a very simple scheduling policy
– accept any offered resources that are large enough to launch the program.

Currently, the wrapper launches MPI jobs conservatively. That is, it never attempts to
use more than its guaranteed allocation of the resources to avoid resource revocation.

5.4.3 Torque Port

We have ported the Torque cluster resource manager [43] to run as a framework on
Mesos. The framework consists of a Mesos scheduler and executor, written in 360 lines
of Python code, that launch and manage different components of Torque. In addition, we
modified three lines of Torque source code to allow it to elastically scale up and down on
Mesos depending on the jobs in its queue. The amount of code to change was very small
and we had easy access to the source code due to Torque being open source. Even being
unfamiliar with the complicated Torque code base, it took little effort (approximately five
hours) to identify the location of the relevant code to change and test the effect of the
changes.

After registering with the Mesos master, the framework scheduler configures and
launches a Torque server and then periodically monitors the server’s job queue. While
the queue is empty, the scheduler releases all tasks (down to an optional minimum, which
we set to 0) and refuses all resource offers it receives from Mesos. Once a job gets added
to Torque’s queue (using the standard qsub command), the scheduler begins accepting new
resource offers. As long as there are jobs in Torque’s queue, the scheduler accepts offers
as necessary to satisfy the constraints of as many jobs in the queue as possible. On each
node where offers are accepted, Mesos launches our executor, which in turn starts a Torque
backend daemon and registers it with the Torque server. When enough Torque backend
daemons have registered, the torque server will launch the next job in its queue.

Because jobs that run on Torque (e.g., MPI) may not be fault tolerant, Torque avoids
having its tasks revoked by not accepting resources beyond its guaranteed allocation.

5.4.4 Spark Framework

Mesos enables the creation of specialized frameworks optimized for workloads for which
more general execution layers may not be optimal. To test the hypothesis that simple
specialized frameworks provide value, we identified one class of jobs that were found to
perform poorly on Hadoop by machine learning researchers at our lab: iterative jobs, where
a dataset is reused across a number of iterations. In response to this observation, a team
of researchers in our lab built a specialized framework called Spark [49, 50] optimized for
these workloads.

One example of an iterative algorithm used in machine learning is logistic regression
[29]. This algorithm seeks to find a line that separates two sets of labeled data points. The

44

. . .

w

f(x,w) w

f(x,w)

x

x

a) Dryad b) Spark

w

f(x,w)
x

Figure 5.3: Data flow of a logistic regression job in Dryad vs. Spark. Solid lines show data

flow within the framework. Dashed lines show reads from a distributed file system. Spark

reuses in-memory data across iterations to improve efficiency.

algorithm starts with a random line w. Then, on each iteration, it computes the gradient
of an objective function that measures how well the line separates the points, and shifts w
along this gradient. This gradient computation amounts to evaluating a function f(x,w)
over each data point x and summing the results. An implementation of logistic regression
in Hadoop must run each iteration as a separate MapReduce job, because each iteration
depends on the w computed at the previous one. This imposes overhead because every
iteration must re-read the input file into memory. In Dryad, the whole job can be expressed
as a data flow DAG as shown in Figure 5.3a, but the data must still must be reloaded from
disk at each iteration. Reusing the data in memory between iterations in Dryad would
require cyclic data flow.

Spark’s execution is shown in Figure 5.3b. Spark uses the long-lived nature of Mesos
executors to cache a slice of the dataset in memory at each executor, and then run multiple
iterations on this cached data. This caching is achieved in a fault-tolerant manner: if a
node is lost, Spark remembers how to recompute its slice of the data.

By building Spark on top of Mesos, the Spark team was able to keep Spark’s implemen-
tation small (about 1300 lines of code), yet still capable of outperforming Hadoop by 10×
for iterative jobs. In particular, using Mesos’s API saved the time to write a master daemon,
slave daemon, and communication protocols between them for Spark. The main pieces they
had to write were a framework scheduler (which uses delay scheduling for locality) and user
APIs.

We refer the reader to [49, 50] for more details on Spark.

45

5.4.5 Elastic Web Server Farm

We built an elastic web server farm framework that takes advantage of Mesos to scale
up and down based on external load.

Similar to the Torque framework, the web server farm framework uses a scheduler
“wrapper” and executor “wrapper”. The scheduler wrapper launches an haproxy [5] load
balancer and periodically monitors its web request statistics to decide when to launch or
teardown servers. Its only scheduling constraint is that it will launch at most one Apache
instance per machine, and then set a filter to stop receiving further offers for that machine.
The wrappers are implemented in 250 lines of Python.

5.5 Mesos Evaluation

We evaluated Mesos through a series of experiments on the Amazon Elastic Compute
Cloud (EC2). We begin with a macrobenchmark that evaluates how the system shares
resources between four workloads, and go on to present a series of smaller experiments
designed to evaluate overhead, decentralized scheduling, our specialized framework (Spark),
scalability, and failure recovery.

5.5.1 Macrobenchmark

To evaluate the primary goal of Mesos, which is enabling diverse frameworks to efficiently
share a cluster, we ran a macrobenchmark consisting of a mix of four workloads:

• A Hadoop instance running a mix of small and large jobs based on the workload at
Facebook.

• A Hadoop instance running a set of large batch jobs.

• Spark running a series of machine learning jobs.

• Torque running a series of MPI jobs.

We compared a scenario where the workloads ran as four frameworks on a 96-node
Mesos cluster using fair sharing to a scenario where they were each given a static partition
of the cluster (24 nodes), and measured job response times and resource utilization in both
cases. We used EC2 nodes with four CPU cores and 15 GB of RAM.

We begin by describing the four workloads in more detail, and then present our results.

Macrobenchmark Workloads

Facebook Hadoop Mix Our Hadoop job mix was based on the distribution of job sizes
and inter-arrival times at Facebook, reported in [48]. The workload consists of 100 jobs

46

Bin Job Type Map Tasks Reduce Tasks # Jobs Run

1 selection 1 NA 38

2 text search 2 NA 18

3 aggregation 10 2 14

4 selection 50 NA 12

5 aggregation 100 10 6

6 selection 200 NA 6

7 text search 400 NA 4

8 join 400 30 2

Table 5.2: Job types for each bin in our Facebook Hadoop mix.

submitted at fixed times over a 25-minute period, with a mean inter-arrival time of 14s.
Most of the jobs are small (1-12 tasks), but there are also large jobs of up to 400 tasks.1 The
jobs themselves were from the Hive benchmark [7], which contains four types of queries:
text search, a simple selection, an aggregation, and a join that gets translated into multiple
MapReduce steps. We grouped the jobs into eight bins of job type and size (listed in Table
5.2) so that we could compare performance in each bin. We also set the framework scheduler
to perform fair sharing between its jobs, as this policy is used at Facebook.

Large Hadoop Mix To emulate batch workloads that need to run continuously, such as
web crawling, we had a second instance of Hadoop run a series of IO-intensive 2400-task
text search jobs. A script launched ten of these jobs, submitting each one after the previous
one finished.

Spark We ran five instances of an iterative machine learning job on Spark. These were
launched by a script that waited two minutes after each job ended to submit the next. The
job we used was alternating least squares (ALS), a collaborative filtering algorithm [53].
This job is CPU-intensive but also benefits from caching its input data on each node, and
needs to broadcast updated parameters to all nodes running its tasks on each iteration.

Torque / MPI Our Torque framework ran eight instances of the tachyon raytracing job
[45] that is part of the SPEC MPI2007 benchmark. Six of the jobs ran small problem sizes
and two ran large ones. Both types used 24 parallel tasks. We submitted these jobs at fixed
times to both clusters. The tachyon job is CPU-intensive.

Macrobenchmark Results

A successful result for Mesos would show two things: that Mesos achieves higher uti-
lization than static partitioning, and that jobs finish at least as fast in the shared cluster

1We scaled down the largest jobs in [48] to have the workload fit a quarter of our cluster size.

47

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

Sh
ar

e
of

 C
lu

st
er

Time (s)

(a) Facebook Hadoop Mix

Static Partitioning
Mesos

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000

Sh
ar

e
of

 C
lu

st
er

Time (s)

(b) Large Hadoop Mix

Static Partitioning
Mesos

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

Sh
ar

e
of

 C
lu

st
er

Time (s)

(c) Spark

Static Partitioning
Mesos

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

Sh
ar

e
of

 C
lu

st
er

Time (s)

(d) Torque / MPI

Static Partitioning
Mesos

Figure 5.4: Comparison of cluster shares (fraction of CPUs) over time for each of the

frameworks in the Mesos and static partitioning macrobenchmark scenarios. On Mesos,

frameworks can scale up when their demand is high and that of other frameworks is low,

and thus finish jobs faster. Note that the plots’ time axes are different (e.g., the large Hadoop

mix takes 3200s with static partitioning).

as they do in their static partition, and possibly faster due to gaps in the demand of other
frameworks. Our results show both effects, as detailed below.

We show the fraction of CPU cores allocated to each framework by Mesos over time in
Figure 5.5. We see that Mesos enables each framework to scale up during periods when
other frameworks have low demands, and thus keeps cluster nodes busier. For example, at
time 350, when both Spark and the Facebook Hadoop framework have no running jobs and
Torque is using 1/8 of the cluster, the large-job Hadoop framework scales up to 7/8 of the
cluster. In addition, we see that resources are reallocated rapidly (e.g., when a Facebook
Hadoop job starts around time 360) due to the fine-grained nature of tasks. Finally, higher
allocation of nodes also translates into increased CPU and memory utilization (by 10% for
CPU and 17% for memory), as shown in Figure 5.6.

A second question is how much better jobs perform under Mesos than when using a
statically partitioned cluster. We present this data in two ways. First, Figure 5.4 compares
the resource allocation over time of each framework in the shared and statically partitioned
clusters. Shaded areas show the allocation in the statically partitioned cluster, while solid
lines show the share on Mesos. We see that the fine-grained frameworks (Hadoop and
Spark) take advantage of Mesos to scale up beyond 1/4 of the cluster when global demand
allows this, and consequently finish bursts of submitted jobs faster in Mesos. At the same
time, Torque achieves roughly similar allocations and job durations under Mesos (with some
differences explained later).

Second, Tables 5.3 and 5.4 show a breakdown of job performance for each framework.
In Table 5.3, we compare the aggregate performance of each framework, defined as the sum

48

Figure 5.5: Framework shares on Mesos during the macrobenchmark. By pooling resources,

Mesos lets each workload scale up to fill gaps in the demand of others. In addition, fine-

grained sharing allows resources to be reallocated in tens of seconds.

 0
 20
 40
 60
 80

 100

 0 200 400 600 800 1000 1200 1400 1600C
PU

 U
til

iz
at

io
n

(%
)

Time (s)

Mesos Static

 0
 10
 20
 30
 40
 50

 0 200 400 600 800 1000 1200 1400 1600M
em

or
y

U
til

iz
at

io
n

(%
)

Time (s)

Mesos Static

Figure 5.6: Average CPU and memory utilization over time across all nodes in the Mesos

cluster vs. static partitioning.

49

Framework
Sum of Exec Times w/
Static Partitioning (s)

Sum of Exec Times
with Mesos (s)

Speedup

Facebook
Hadoop Mix

7235 6319 1.14

Large Hadoop
Mix

3143 1494 2.10

Spark 1684 1338 1.26

Torque / MPI 3210 3352 0.96

Table 5.3: Aggregate performance of each framework in the macrobenchmark (sum of

running times of all the jobs in the framework). The speedup column shows the relative gain

on Mesos.

of job running times, in the static partitioning and Mesos scenarios. We see the Hadoop
and Spark jobs as a whole are finishing faster on Mesos, while Torque is slightly slower. The
framework that gains the most is the large-job Hadoop mix, which almost always has tasks
to run and fills in the gaps in demand of the other frameworks; this framework performs 2x
better on Mesos.

Table 5.4 breaks down the results further by job type. We observe two notable trends.
First, in the Facebook Hadoop mix, the smaller jobs perform worse on Mesos. This is due
to an interaction between the fair sharing performed by Hadoop (among its jobs) and the
fair sharing in Mesos (among frameworks): During periods of time when Hadoop has more
than 1/4 of the cluster, if any jobs are submitted to the other frameworks, there is a delay
before Hadoop gets a new resource offer (because any freed up resources go to the framework
farthest below its share), so any small job submitted during this time is delayed for a long
time relative to its length. In contrast, when running alone, Hadoop can assign resources to
the new job as soon as any of its tasks finishes. This problem with fair sharing is also seen
in networks [44], and could be mitigated by running the small jobs on a separate framework
or using a different allocation policy (e.g., using lottery scheduling instead of offering all
freed resources to the framework with the lowest share).

Lastly, Torque is the only framework that performed worse, on average, on Mesos.
The large tachyon jobs took on average two minutes longer, while the small ones took 20s
longer. Some of this delay is due to Torque having to wait to launch 24 tasks on Mesos
before starting each job, but the average time this takes is 12s. We believe that the rest of
the delay is due to stragglers (slow nodes). In our standalone Torque run, we saw two jobs
take about 60s longer to run than the others (Fig. 5.4d). We discovered that both of these
jobs were using a node that performed slower on single-node benchmarks than the others (in
fact, Linux reported 40% lower bogomips on it). Because tachyon hands out equal amounts
of work to each node, it runs as slowly as the slowest node.

50

Framework Job Type
Exec Time w/ Static

Partitioning (s)
Avg. Speedup

on Mesos
Facebook Hadoop

Mix
selection (1) 24 0.84

text search (2) 31 0.90
aggregation (3) 82 0.94

selection (4) 65 1.40
aggregation (5) 192 1.26

selection (6) 136 1.71
text search (7) 137 2.14

join (8) 662 1.35
Large Hadoop Mix text search 314 2.21

Spark ALS 337 1.36
Torque / MPI small tachyon 261 0.91

large tachyon 822 0.88

Table 5.4: Performance of each job type in the macrobenchmark. Bins for the Facebook

Hadoop mix are in parentheses.

5.5.2 Overhead

To measure the overhead Mesos imposes when a single framework uses the cluster, we
ran two benchmarks using MPI and Hadoop on an EC2 cluster with 50 nodes, each with
2 CPU cores and 6.5 GB RAM. We used the High-Performance LINPACK [18] benchmark
for MPI and a WordCount job for Hadoop, and ran each job three times. The MPI job
took on average 50.9s without Mesos and 51.8s with Mesos, while the Hadoop job took 160s
without Mesos and 166s with Mesos. In both cases, the overhead of using Mesos was less
than 4%.

5.5.3 Data Locality through Delay Scheduling

In this experiment, we evaluated how Mesos’ resource offer mechanism enables frame-
works to control their tasks’ placement, and in particular, data locality. We ran 16 instances
of Hadoop using 93 EC2 nodes, each with four CPU cores and 15 GB RAM. Each node ran
a map-only scan job that searched a 100 GB file spread throughout the cluster on a shared
HDFS file system and outputted 1% of the records. We tested four scenarios: giving each
Hadoop instance its own 5-6 node static partition of the cluster (to emulate organizations
that use coarse-grained cluster sharing systems), and running all instances on Mesos using
either no delay scheduling, 1s delay scheduling or 5s delay scheduling.

Figure 5.7 shows averaged measurements from the 16 Hadoop instances across three
runs of each scenario. Using static partitioning yields very low data locality (18%) because
the Hadoop instances are forced to fetch data from nodes outside their partition. In con-
trast, running the Hadoop instances on Mesos improves data locality, even without delay
scheduling, because each Hadoop instance has tasks on more nodes of the cluster (there

51

0

120

240

360

480

600

0%

20%

40%

60%

80%

100%

Static
partitioning

Mesos, no
delay sched.

Mesos, 1s
delay sched.

Mesos, 5s
delay sched.

Jo
b

 R
u

n
n

in
g

 T
Im

e
(s

)

L
o

ca
l M

ap
 T

as
ks

 (
%

)

Data Locality Job Running Times

Figure 5.7: Data locality and average job durations for 16 Hadoop instances running on

a 93-node cluster using static partitioning, Mesos, or Mesos with delay scheduling.

are four tasks per node), and can therefore access more blocks locally. Adding a 1-second
delay brings locality above 90%, and a 5-second delay achieves 95% locality, which is com-
petitive with running one Hadoop instance alone on the whole cluster. As expected, job
performance improves with data locality: jobs run 1.7x faster in the 5s delay scenario than
with static partitioning.

5.5.4 Spark Framework

We evaluated the benefit of running iterative jobs using the specialized Spark framework
developed on top of Mesos (Section 5.4.4) over the general-purpose Hadoop framework. We
used a logistic regression job implemented in Hadoop by machine learning researchers in
our lab, and wrote a second version of the job using Spark. We ran each version separately
on 20 EC2 nodes, each with four CPU cores and 15 GB RAM. Each experiment used a 29
GB data file and varied the number of logistic regression iterations from 1 to 30 (see Figure
5.8).

With Hadoop, each iteration takes 127s on average, because it runs as a separate MapRe-
duce job. In contrast, with Spark, the first iteration takes 174s, but subsequent iterations
only take about 6 seconds, leading to a speedup of up to 10x for 30 iterations. This happens
because the cost of reading the data from disk and parsing it is much higher than the cost
of evaluating the gradient function computed by the job on each iteration. Hadoop incurs
the read/parsing cost on each iteration, while Spark reuses cached blocks of parsed data
and only incurs this cost once. The longer time for the first iteration in Spark is due to the
use of slower text parsing routines.

52

0

1000

2000

3000

4000

0 10 20 30

R
u

n
n

in
g

 T
im

e
(s

)

Number of Iterations

Hadoop
Spark

Figure 5.8: Hadoop and Spark logistic regression running times.

5.5.5 Elastic Web Farm

To demonstrate an interactive framework dynamically scaling on Mesos we ran an elastic
web farm on Mesos. We used HTTPerf [37] to generate increasing and then decreasing
load on the web farm. As the average load on each server reaches 150 sessions/second,
the elastic web farm framework signals to Mesos that it is willing to accept more resources
and launches another Apache instance. We ran experiments using four EC2 instances with
eight CPU cores and 6.5 GB RAM. Figure 5.9 shows the web farm dynamically adapts the
number of web servers to the offered load (sessions/second at the load balancer) to ensure
that the load at each web server remains at or below 150 sessions/sec. The brief drops in
sessions per second at the load balancer were due to limitations in the current haproxy

implementation, which required the framework to restart haproxy to increase or decrease
the number of Apache servers.

5.5.6 Mesos Scalability

To evaluate Mesos’ scalability, we emulated large clusters by running up to 50,000 slave
daemons on 99 Amazon EC2 nodes, each with eight CPU cores and six GB RAM. We
used one EC2 node for the master and the rest of the nodes to run slaves. During the
experiment, each of 200 frameworks running throughout the cluster continuously launches
tasks, starting one task on each slave that it receives a resource offer for. Each task sleeps
for a period of time based on a normal distribution with a mean of 30 seconds and standard
deviation of 10s, and then ends. Each slave runs up to two tasks at a time.

Once the cluster reached steady-state (i.e., the 200 frameworks achieve their fair shares
and all resources were allocated), we launched a test framework that runs a single ten second
task and measured how long this framework took to finish. This allowed us to calculate the
extra delay incurred over 10s due to having to register with the master, wait for a resource

53

Figure 5.9: The average session load on the load balancer, the average number of sessions

on each web server, and the number of web servers running over time.

54

0

0.25

0.5

0.75

1

0 10000 20000 30000 40000 50000

Ta
sk

 L
au

n
ch

O

ve
rh

ea
d

 (
se

co
n

d
s)

Number of Nodes

Figure 5.10: Mesos master’s scalability versus number of slaves.

offer, accept it, wait for the master to process the response and launch the task on a slave,
and wait for Mesos to report the task as finished.

We plot this extra delay in Figure 5.10, showing averages of five runs. We observe that
the overhead remains small (less than one second) even at 50,000 nodes. In particular, this
overhead is much smaller than the average task and job lengths in data center workloads
(see Section 2.2). Because Mesos was also keeping the cluster fully allocated, this indicates
that the master kept up with the load placed on it. Unfortunately, the EC2 virtualized
environment limited scalability beyond 50,000 slaves, because at 50,000 slaves the master
was processing 100,000 packets per second (in+out), which has been shown to be the current
achievable limit on EC2 [15].

5.5.7 Failure Recovery

To evaluate recovery from master failures, we conducted an experiment with 200 to
4000 slave daemons on 62 EC2 nodes with four cores and 15 GB RAM. We ran 200 frame-
works that each launched 20-second tasks, and two Mesos masters connected to a 5-node
ZooKeeper quorum. We synchronized the two masters’ clocks using NTP and measured
the mean time to recovery (MTTR) after killing the active master. The MTTR is the time
for all of the slaves and frameworks to connect to the second master. In all cases, the MTTR
was between four and eight seconds, with 95% confidence intervals of up to 3s on either
side.

5.5.8 Performance Isolation

As discussed in Section 5.2.4, Mesos leverages existing OS isolation mechanism to pro-
vide performance isolation between different frameworks’ tasks running on the same slave.
While these mechanisms are not perfect, a preliminary evaluation of Linux Containers [10]
shows promising results. In particular, using Containers to isolate CPU usage between a
MediaWiki web server (consisting of multiple Apache processes running PHP) and a “hog”

55

application (consisting of 256 processes spinning in infinite loops) shows on average only a
30% increase in request latency for Apache versus a 550% increase when running without
Containers. We refer the reader to [36] for a fuller evaluation of OS isolation mechanisms.

5.6 Mesos Chapter Summary

In this chapter, we described and evaluated Mesos, our real world implementation of
a DPS Cluster Scheduling system. We showed the flexibility benefits of Mesos by easily
porting a variety of existing cluster frameworks to run on of it. Additionally, we showed
Mesos scaling to 50,000 nodes. Finally, we showed the utilization benefits of Mesos.

In the next chapter we motivate and introduce an alternative cluster scheduling archi-
tecture called Replicated State Scheduling that represents the next evolutionary step in our
taxonomy of cluster scheduling architectures.

56

Chapter 6

Replicated State Scheduling

In this Chapter, we motivate, present, and evaluate an alternative to Partitioned State
Scheduling called Replicated State Scheduling (RSS) that was proposed by researchers at
Google [11], in which scheduling domains are allowed to overlap. Allowing scheduling
domains to overlap allows scheduling agents read access to the entirety of cluster state
while they make their scheduling decisions. However, the cost of this additional flexibility
for the scheduling agents is the overhead of resolving conflicts that result from concurrent
writes to cluster state.

The rest of this chapter is structured as follows. First, in Section 6.1, we motivate and
describe Replicated State Scheduling. Then in Section 6.2, we detail the RSS architectural
components, and a number of alternatives for minimizing and resolving scheduling transac-
tion conflicts. In Section 6.3 we extend our Monte Carlo simulation framework to evaluate
the scalability of RSS and measure the cost of scheduling agent interference (i.e., failed
transactions). We also compare and contrast partitioned and replicated state scheduling.

6.1 Replicated State Scheduling

To motivate Replicated State Scheduling, we first revisit the Partitioned State Schedul-
ing approach we introduced in chapter 4. One of the major drawbacks of Partitioned State
Scheduling is that scheduling domains must be selected before the scheduling agent per-
forms its task-resource assignments, thereby potentially restricting the “goodness of fit”
that might be achieved by the scheduling agent in its task-resource assignments. As we
discussed in Section 4.2.2, that approach is in many ways analogous to pessimistic concur-
rency control in databases. Now we will look at an alternate approach, which is analogous
to optimistic concurrency control in databases, where scheduling domains are allowed to
overlap each other.

The original design of Mesos, and its choice to use PSS overlooked the growing need of
certain class of scheduling agents. Namely, those responsible for placing long running tasks

57

Cluster
Scheduling

Monolithic
(Single-agent)

Multi-agent

Partitioned State
Scheduling

Statically
Partitioned

Dynamically
Partitioned

Replicated State
Scheduling

Figure 6.1: Our cluster scheduler taxonomy with Replicated State Scheduling (RSS) high-

lighted.

that provide low latency service request interfaces (such as web applications, memory or
disk based storage systems, or database services like key value stores or RDBMSs). These
scheduling agents attempt to optimize task-resource assignments (e.g., for failure recovery or
to withstand planned resource outages like upgrades to machines). To do so, they typically:

• Treat all of the cell as their scheduling domain (e.g., to spread tasks across
racks/machines and maintain statistical models of failure scenarios)

• Have long scheduling decision times due to complex scheduling policies (e.g., linear
algebra, convex optimization, constraint matching, calendaring)

We now present a natural extension of PSS called Replicated State Scheduling (RSS),
a new multi-agent scheduling architecture in which all scheduling agents operate over the
same scheduling domain, i.e., all job managers maintain their own full private copy of cluster
state. Figure 6.1 shows where RSS fits into the taxonomy of architectures we introduced in
Chapter 2.

6.2 Overview of RSS Architecture

In RSS, there is one common cluster state maintained by the meta-scheduling agent, that
acts as a resilient master copy of the resource allocations in the cluster. In addition, each
job manager maintains its own private cluster state, which it synchronizes with common
cluster state before making each job scheduling decision, i.e., creating a job transaction.
Figure 6.2 is a conceptual diagram of RSS containing the components of the architecture.

58

Job	
 Manager	
 2	

Job	
 Manager	
 1	

Common	

Cell	
 State	

Meta-Scheduling
Agent

Multi-agent Replicated State Scheduling

Private	
 Cell	

State	
 1	

Private	
 Cell	

State	
 2	

Scheduling	

Agent	

Job Queue

Scheduling	

Agent	

Job Queue …	
 B	
 A	

Jobs

…	
 2	
 1	

Jobs

Figure 6.2: A conceptual diagram showing Replicated State scheduling. Each Job Man-

ager now maintains its own private copy of cluster state, and the meta-scheduling agent is

responsible for managing updates between private and common cluster states according to a

meta-scheduling policy.

6.2.1 Role of the Job Manager

Remember from Section 2.3.2 that a job transaction contains a list of task-resource
assignments. We explore alternative semantics for transaction and conflict detection in
detail in Section 6.2.2, but first we will describe the scheduling process from a job manager’s
perspective. The following is a detailed description of the steps taken by a job manager
that constitute the job transaction lifecycle in an RSS system:

1. If job queue is not empty, remove next job from job queue.

2. Sync: Begin a transaction by synchronizing private cluster state with common cluster
state.

3. Schedule: Engage scheduling agent to attempt to create task-resource assignments
for all tasks in job, modifying private cluster state in the process.

4. Submit: Attempt to commit job transaction (i.e., all task-resource assignments for
the job) from private cluster state back to common cluster state. Job transaction can
succeed or fail.

5. Record which task-resource assignments were successfully committed to common clus-
ter state.

6. If any tasks in job remain unscheduled—either because no suitable resources were

59

Example	
 of	
 Failed	
 Service	
 Scheduler	
 Transaction	

	

Batch	
 Scheduler	
 scheduling	
 time

Service	
 Scheduler	
 scheduling	
 time

Time

	
 Service	
 Scheduler	
 submits	

transaction,	
 FAILS

	
 Service	
 Scheduler	

syncs

	
 Batch	
 Scheduler	

syncs

Batch	
 Scheduler	
 submits,	

Transaction,	
 SUCCEEDS

Figure 6.3: A timeline showing two overlapping transaction lifecycles leading to a trans-

action conflict; one from a Batch Scheduler and the other from a Service Scheduler. The

schedulers issue transactions; here the Batch Scheduler makes decisions quickly while the

Service Scheduler is slower. Consequently some of the Service Scheduler’s transactions fail,

and need to be retried.

found for the task during the “schedule” stage or the task-resource assignment expe-
rienced a—insert job back into job queue to be handled again in a future transaction

A job manager repeats the above steps for each job scheduling attempt as long as there are
jobs remaining to be scheduled. We call this the job scheduling loop. All job managers in
the system execute their job scheduling loops concurrently. During the “schedule” phase,
each job manager can make decisions according to their potentially out-of-date snapshot of
the entire cluster, i.e., their private cluster state. Also, each has complete freedom to claim
any cluster resources that are marked as available in their private cluster state by creating
task-resource assignments. The creation of a task-resource assignment represents an edit to
a row of cluster state. If the resources on the same machine are claimed by two job managers
concurrently, i.e., transactions from both job managers contain a task-resource assignment
with a common machine ID, then the two task-resource assignments may conflict, depending
on the conflict detection mode in use. We will discuss conflict modes in detail in Section
6.2.2 below.

6.2.2 Role of the meta-scheduling agent

In RSS, the meta-scheduling agent plays a slightly different role than it does in DPS.
Because scheduling agents are allowed to operate over the same scheduling domains concur-

60

rently, the meta-scheduling agent must detect and reject transactions that conflict. In DPS,
on the other hand, the meta-scheduling agent actively ensures that scheduling domains do
not overlap, thus conflicts cannot occur. The meta-scheduling agent can be used to enforce
fairness or priority policies in both architectures, but in RSS action is taken passively in
response to the submission of job transactions. Such transactions can be rejected either
due to a conflict resulting from concurrency or a policy violation. This is in contrast to the
meta-scheduling agent in PSS which actively controls and modifies scheduling domains as
partitions of cluster state.

One could envision supporting resource offers in a RSS scheduler or perhaps extending
Mesos to use RSS by having the Mesos master send “replicated” resource offers, i.e., the
same resource offer to multiple Mesos frameworks. At the extreme end of the spectrum,
Mesos would be sending a copy of the entire available state of the cluster to all frameworks
in parallel. The resulting system would be very similar to Omega, the RSS system we
explore here in collaboration with Google1.

Responsibilities of the meta-scheduling agent:

• Attempt to execute transactions submitted by job managers according to transaction
mode settings

• Detect conflicts according to conflict detection semantics and policies

• Enforce meta-scheduling policies

For each job transaction submitted, an RSS meta-scheduling agent performs the following:

1. reject task-resource assignments that would violate policies

2. reject task-resource assignments that conflict with previously accepted transactions

3. reject job all task-resource assignments in a job transaction if using all-or-nothing
transaction semantics and at least one task-resource assignment was rejected

Conflict Detection Semantics

We support two types of conflict detection for use in the submit phase of the transaction
lifecycle: machine-granularity and resource-granularity. First, with machine-granularity
conflict detection, we reject a task-resource assignment if the row of cluster state represent-
ing the machine referenced by the assignment has has had any of its columns representing
available resources decremented by the task-resource assignment of another transaction
since the sync phase of the current transaction. Note that in this mode, an edit to the
machine in which resources are freed on a machine, which happens when a task ends, does
not cause a conflict. The advantages of this mode are simplicity and ease of implemen-
tation since sequence-numbers can be used to track cluster state row-edits. Alternately,
resource-granularity conflict detection is slightly more sophisticated, and will only reject a
task-resource assignment if it causes the row of cluster state to enter an invalid state, e.g., if

1See [42] for the full paper

61

it would try to reserve more CPUs for a task than the machine currently has available,
which would result in that row/column of cluster state containing a negative number, since
a machine can’t have a negative number of available CPUs.

Transaction Granularity Semantics

We define two types of transaction granularities: all-or-nothing and incremental. All-or-
nothing transactions are atomic. That is, if a single task-resource assignment conflicts then
none of the task-resource assignments in the transaction are applied to common cluster
state. Alternately, with incremental transactions, each task-resource assignment can fail
independent of all others. We say a transaction succeeds if none of its constituent task-
resource assignments conflict, and we say the transaction fails otherwise.

Discussion

RSS offers even more opportunities for parallelism than DPS because now, not only
can scheduling decisions be made in parallel, but scheduling decisions can be made in
parallel over the same set of resources. For example, assume job manager A assigns task
TA to machine M , and job manager B concurrently assigns task TB to machine M , where
TA and TB each require 1 CPU and 1 GB mem. Also assume that at the beginning of
both transactions M has 5 CPUs and 5 GB of mem currently available. Then using RSS
with resource-granularity conflict detection, both task-resource assignments can succeed.
Whereas in DPS, though job managers A and B could make task-resource assignments
concurrently, each using their respective scheduling domains, they would still have to take
turns accessing machine M serially since scheduling domains can’t overlap. The primary
disadvantage of RSS is in the form of wasted scheduling work due to failed transactions.

The performance of RSS architectures is ultimately determined by the frequency at
which transactions fail and the costs of such failures. Next, we present an evaluation of
such costs using an extension of our Monte Carlo simulator.

6.3 Monte Carlo RSS Simulation

We modified the Monte Carlo simulator used in Chapters 2 and 4 to simulate Omega-
style RSS cluster scheduling.

Our setup here is similar to the setup of our Monte Carlo simulations of MSS and DPS.
We again simulate one scheduler handling jobs labeled service, and one handling jobs labeled
batch. Both job managers sit in their job scheduling loops. As long as a job is present in
their job queue, a job manager takes the next available job from the queue, synchronizes
its private cluster state with common cluster state, schedules the tasks of the job based
on private cluster state. Then, after waiting for its particular value of scheduling decision
time (we vary this value for the service scheduler only in our experiments), if at least one

62

10ms 0.1s 1s 10s 100s
10ms

1s

1m

1h

1d
A
B
C

(a) Job wait time.

10ms 0.1s 1s 10s 100s
0.0

0.2

0.4

0.6

0.8

1.0
A
B
C

(b) Scheduler busy time fraction.

Figure 6.4: Results of simulation of 7 days running Replicated State Scheduler (Omega):

performance as a function of job timeservice for clusters A, B, and C (see Table 3.1 for de-

scription of each cluster). Solid lines are Batch Schedulers, dotted lines are Service sched-

ulers.

task-resource assignment was created, the job manager submits the transaction to common
cluster state.

Figure 6.4a shows the results of a 7 day run of our Omega Monte Carlo simulator for
clusters A, B, and C (see Table 3.1 for description of each cluster) using resource-granularity
conflict detection and incremental transaction semantics. We can see that the average job
wait times for the Omega approach are comparable to those from Mesos (Figure 4.4a) and
multi-path monolithic (Figure 3.3a). This suggests that the negative impact of interference
is limited, and confirmed by the graph of scheduler busy time fraction (Figure 6.4b).

We also ran experiments showing the impact of using machine-granularity conflict de-
tection. Implementing this was straightforward, using a simple sequence number for each
machine cluster state. As Figure 6.5 shows, this change results in a steep increase in conflict
fraction, and consequently, scheduler busy time fraction, thus seriously impacting scalabil-
ity.

Figure 6.5 also shows the effects of using all-or-nothing transaction semantics on conflict
rate and busy time fraction. This is an expensive option that should be used only when
needed by a particular job.

6.4 Review of Replicated State Scheduling

In this chapter we have presented RSS, a natural extension of DPS we explored in col-
laboration with Google in which the scheduling domains of scheduling agents are copies of a
common cluster state synchronized via optimistic concurrency control. We conducted a per-
formance evaluation of the Omega model by extending our existing Monte Carlo simulation

63

10ms 0.1s 1s 10s 100s
0.0

0.2

0.4

0.6

0.8

1.0
Coarse/Gang
Course/Inc
Fine/Gang
Fine/Inc

(a) Median daily conflict fraction.

10ms 0.1s 1s 10s 100s
0.0

0.2

0.4

0.6

0.8

1.0
Coarse/Gang
Course/Inc
Fine/Gang
Fine/Inc

(b) Median daily scheduler busy time fraction.

Figure 6.5: Results of simulation of 7 days running Replicated State Scheduler (Omega):

effect of all-or-nothing transactions and resource-granularity conflict detection as a function

of job time service.

framework and synthetic workloads. The evaluation shows that a parallel scheduler model
based on optimistic concurrency control over shared state is a viable, attractive approach
to cluster scheduling. Although the use of optimistic concurrency control in RSS will do
strictly more work than the DPS approach based on a pessimistic scheme because some
work may need to be re-done, we found that the amount of additional work is insignificant
at reasonable operating points. Furthermore, the resulting benefits of increased parallelism
and resource visibility to scheduling agents makes up for this.

64

Chapter 7

Conclusion and Future Work

We have presented a high level model of cluster scheduling and Monte Carlo simula-
tion framework and used them to compare three cluster scheduling architectures. First,
the popular Monolithic State Scheduling (MSS), then two new architectures: Dynamically
Partitioned State Scheduling (DPS) and Replicated State Scheduling (RSS).

We also presented the design and implementation of Mesos, a real-world DPS cluster
scheduler that allows diverse cluster computing frameworks to efficiently share resources.
Mesos implements DPS with a focus on two design elements: a fine-grained sharing model
at the level of tasks, and a distributed scheduling mechanism called resource offers that del-
egates scheduling decisions to the frameworks. Our evaluation showed that these elements
let Mesos achieve high utilization, respond quickly to workload changes, and cater to diverse
frameworks while remaining scalable and robust. We also showed that existing frameworks
can effectively share resources using Mesos, that Mesos enables the development of spe-
cialized frameworks providing major performance gains, such as Spark, and that Mesos’s
simple design allows the system to be fault tolerant and to scale to 50,000 nodes.

Finally, we described and evaluated Replicated State Scheduling, a cluster scheduling
architecture being explored by Google in Omega, their next generation cluster manage-
ment system. We showed that a parallel scheduler model based on optimistic concurrency
control over shared state provides some benefits over pessimistic concurrency used in DPS
and quantified the costs of the added flexibility in terms of job wait time and scheduling
utilization.

In future work, we plan to factor lessons from RSS and Omega back into Mesos. First,
we will add RSS-style optimistic concurrency control to Mesos by having the allocation
module make resource offers for overlapping sets of resources in parallel. In addition, we
will explore ways by which frameworks can give richer hints about which offers they would
like to receive.

65

Bibliography

[1] “Amazon EC2,” http://aws.amazon.com/ec2.

[2] “Apache Hadoop,” http://hadoop.apache.org.

[3] “Apache Hive,” http://hadoop.apache.org/hive.

[4] “Apache ZooKeeper,” hadoop.apache.org/zookeeper.

[5] “HAProxy Homepage,” http://haproxy.1wt.eu/.

[6] “Hive – A Petabyte Scale Data Warehouse using Hadoop,” http://www.facebook.com/
note.php?note id=89508453919.

[7] “Hive performance benchmarks,” http://issues.apache.org/jira/browse/HIVE-396.

[8] “LibProcess Homepage,” http://www.eecs.berkeley.edu/∼benh/libprocess.

[9] “Linux 2.6.33 release notes,” http://kernelnewbies.org/Linux 2 6 33.

[10] “Linux containers (LXC) overview document,” http://lxc.sourceforge.net/lxc.html.

[11] “Omega Slide Deck by John Wilkes,” http://static.googleusercontent.com/
external content/untrusted dlcp/research.google.com/en/us/university/relations/
facultysummit2011/2011 faculty summit omega wilkes.pdf.

[12] “Personal communication with dhruba borthakur from facebook.”

[13] “Personal communication with owen o’malley and arun c. murphy from the ya-
hoo! hadoop team.”

[14] “Price of Amazon EC2 prices over time.” http://www.cs.washington.edu/homes/
billhowe/aws price history/allsix.html.

[15] “RightScale blog,” blog.rightscale.com/2010/04/01/benchmarking-load-balancers-in-the-cloud.

[16] “Solaris Resource Management.” http://docs.sun.com/app/docs/doc/817-1592.

[17] “Linux kernel cpusets documentation,” http://www.kernel.org/doc/Documentation/
cgroups/cpusets.txt, October 2009.

[18] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Ham-
merling, J. Demmel, C. Bischof, and D. Sorensen, “LAPACK: a portable linear algebra
library for high-performance computers,” in Supercomputing ’90, 1990.

66

http://aws.amazon.com/ec2
http://hadoop.apache.org
http://hadoop.apache.org/hive
hadoop.apache.org/zookeeper
http://haproxy.1wt.eu/
http://www.facebook.com/note.php?note_id=89508453919
http://www.facebook.com/note.php?note_id=89508453919
http://issues.apache.org/jira/browse/HIVE-396
http://www.eecs.berkeley.edu/~benh/libprocess
http://kernelnewbies.org/Linux_2_6_33
http://lxc.sourceforge.net/lxc.html
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/university/relations/facultysummit2011/2011_faculty_summit_omega_wilkes.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/university/relations/facultysummit2011/2011_faculty_summit_omega_wilkes.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/university/relations/facultysummit2011/2011_faculty_summit_omega_wilkes.pdf
http://www.cs.washington.edu/homes/billhowe/aws_price_history/allsix.html
http://www.cs.washington.edu/homes/billhowe/aws_price_history/allsix.html
blog.rightscale.com/2010/04/01/benchmarking-load-balancers-in-the-cloud
http://docs.sun.com/app/docs/doc/817-1592
http://www.kernel.org/doc/Documentation/cgroups/cpusets.txt
http://www.kernel.org/doc/Documentation/cgroups/cpusets.txt

[19] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the
Clouds: A Berkeley View of Cloud Computing,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb 2009. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

[20] L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines, ser. Synthesis Lectures on Computer Architec-
ture. Morgan & Claypool Publishers, 2009.

[21] A. Bouteiller, F. Cappello, T. Herault, G. Krawezik, P. Lemarinier, and F. Magniette,
“Mpich-v2: a fault tolerant MPI for volatile nodes based on pessimistic sender based
message logging,” in Supercomputing ’03, 2003.

[22] L. Cherkasova and R. Gardner, “Measuring cpu overhead for i/o processing in the xen
virtual machine monitor,” in ATEC ’05. USENIX Association, 2005, pp. 24–24.

[23] T. Condie, N. Conway, P. Alvaro, and J. M. Hellerstein, “MapReduce online,” in NSDI
’10, May 2010.

[24] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large
clusters,” in OSDI, 2004, pp. 137–150. [Online]. Available: http://www.usenix.org/
events/osdi04/tech/dean.html

[25] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox,
“Twister: a runtime for iterative mapreduce,” in Proc. HPDC ’10, 2010. [Online].
Available: http://doi.acm.org/10.1145/1851476.1851593

[26] D. R. Engler, M. F. Kaashoek, and J. O’Toole, “Exokernel: An operating system
architecture for application-level resource management,” in SOSP, 1995, pp. 251–266.

[27] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica, “Domi-
nant resource fairness: fair allocation of multiple resource types,” in NSDI, 2011.

[28] Google Inc., “Google Cluster Trace,” http://code.google.com/p/googleclusterdata/.

[29] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. New York, NY: Springer Publishing Company,
2009.

[30] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz,
S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource sharing
in the data center,” in Proceedings of NSDI 2011, 2011. [Online]. Available:
http://www.usenix.org/events/nsdi11/tech/full papers/Hindman.pdf

[31] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed data-
parallel programs from sequential building blocks,” in EuroSys 07, 2007.

[32] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg, “Quincy:
Fair scheduling for distributed computing clusters,” in SOSP, November 2009.

[33] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta, “On availability of intermediate data in
cloud computations,” in HOTOS, May 2009.

67

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
http://doi.acm.org/10.1145/1851476.1851593
http://code.google.com/p/googleclusterdata/
http://www.usenix.org/events/nsdi11/tech/full_papers/Hindman.pdf

[34] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and K. Yocum, “Stateful bulk
processing for incremental analytics,” in Proc. ACM symposium on Cloud computing,
ser. SoCC ’10, 2010. [Online]. Available: http://doi.acm.org/10.1145/1807128.1807138

[35] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski, “Pregel: a system for large-scale graph processing,” in SIGMOD,
2010, pp. 135–146. [Online]. Available: http://doi.acm.org/10.1145/1807167.1807184

[36] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos, G. Hamilton,
M. McCabe, and J. Owens, “Quantifying the performance isolation properties of vir-
tualization systems,” in ExpCS ’07, 2007.

[37] D. Mosberger and T. Jin, “httperf – a tool for measuring web server performance,”
SIGMETRICS Perform. Eval. Rev., vol. 26, no. 3, pp. 31–37, 1998.

[38] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy, and S. Hand,
“Ciel: a universal execution engine for distributed data-flow computing,” in NSDI,
2011.

[39] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov, “The Eucalyptus open-source cloud-computing system,” in CCA ’08,
2008.

[40] R. Raman, M. Livny, and M. Solomon, “Matchmaking: An extensible framework
for distributed resource management,” Cluster Computing, vol. 2, pp. 129–138, April
1999. [Online]. Available: http://portal.acm.org/citation.cfm?id=592887.592921

[41] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, “Towards
understanding heterogeneous clouds at scale: Google trace analysis,” Intel Science and
Technology Center for Cloud Computing, Tech. Rep. ISTC-CC-TR-12-101, April 2012.

[42] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Flexible, scalable
schedulers for large compute clusters,” Tech. Rep., Under submission.

[43] G. Staples, “TORQUE resource manager,” in Proc. Supercomputing ’06, 2006.

[44] I. Stoica, H. Zhang, and T. S. E. Ng, “A hierarchical fair service curve algorithm for
link-sharing, real-time and priority services,” in SIGCOMM ’97, 1997, pp. 249–262.

[45] J. Stone, “Tachyon ray tracing system,” http://jedi.ks.uiuc.edu/∼johns/raytracer.

[46] C. A. Waldspurger and W. E. Weihl, “Lottery scheduling: flexible proportional-share
resource management,” in OSDI, 1994.

[47] Y. Yu, P. K. Gunda, and M. Isard, “Distributed aggregation for data-parallel comput-
ing: interfaces and implementations,” in SOSP ’09, 2009, pp. 247–260.

[48] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica,
“Delay scheduling: A simple technique for achieving locality and fairness in cluster
scheduling,” in EuroSys 10, 2010.

[49] M. Zaharia, M. Chowdhury, T. Das, D. Ankur, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica, “Resilient Distributed Datasets: A Fault-Tolerant Abstrac-
tion for In-Memory Cluster Computing,” in NSDI, 2012.

68

http://doi.acm.org/10.1145/1807128.1807138
http://doi.acm.org/10.1145/1807167.1807184
http://portal.acm.org/citation.cfm?id=592887.592921
http://jedi.ks.uiuc.edu/~johns/raytracer

[50] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster
Computing with Working Sets,” in USENIX HotCloud, 2010.

[51] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, “Improving MapRe-
duce performance in heterogeneous environments,” in Proc. OSDI ’08, 2008.

[52] S. Zhou, “LSF: Load sharing in large-scale heterogeneous distributed systems,” in
Workshop on Cluster Computing, 1992.

[53] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel collaborative
filtering for the Netflix prize,” in AAIM. Springer-Verlag, 2008, pp. 337–348.

69

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Motivation
	Requirements
	Approach and Contributions
	Dissertation Structure

	Related Work and Taxonomy of Cluster Scheduling
	Target Cluster Environment
	Cluster Workload Taxonomy
	A General Model for Cluster Scheduling
	Taxonomy of Cluster Scheduling Architectures
	Survey of Related Work

	Monolithic State Scheduling
	MSS Architecture Overview
	Monte Carlo MSS Simulation
	Hadoop, a Case Study of Monolithic State Scheduling
	Review of Monolithic State Scheduling

	Partitioned State Scheduling
	Multi-agent Scheduling
	Partitioned State Scheduling
	Monte Carlo DPS Simulation
	Analyzing Mesos DPS Behavior
	Definitions, Metrics and Assumptions
	Homogeneous Tasks
	Placement Preferences
	Heterogeneous Tasks
	Framework Incentives
	Limitations of Partitioned State Scheduling
	Partitioned State Scheduling Chapter Summary

	Mesos, a Dynamically Partitioned State Scheduler
	Mesos Background and Goals
	Mesos Architecture
	Mesos Implementation
	Mesos Frameworks
	Mesos Evaluation
	Mesos Chapter Summary

	Replicated State Scheduling
	Replicated State Scheduling
	Overview of RSS Architecture
	Monte Carlo RSS Simulation
	Review of Replicated State Scheduling

	Conclusion and Future Work
	Bibliography

