Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Detecting 3D syndromic faces as outliers using unsupervised normalizing flow models.

Abstract

Many genetic syndromes are associated with distinctive facial features. Several computer-assisted methods have been proposed that make use of facial features for syndrome diagnosis. Training supervised classifiers, the most common approach for this purpose, requires large, comprehensive, and difficult to collect databases of syndromic facial images. In this work, we use unsupervised, normalizing flow-based manifold and density estimation models trained entirely on unaffected subjects to detect syndromic 3D faces as statistical outliers. Furthermore, we demonstrate a general, user-friendly, gradient-based interpretability mechanism that enables clinicians and patients to understand model inferences. 3D facial surface scans of 2471 unaffected subjects and 1629 syndromic subjects representing 262 different genetic syndromes were used to train and evaluate the models. The flow-based models outperformed unsupervised comparison methods, with the best model achieving an ROC-AUC of 86.3% on a challenging, age and sex diverse data set. In addition to highlighting the viability of outlier-based syndrome screening tools, our methods generalize and extend previously proposed outlier scores for 3D face-based syndrome detection, resulting in improved performance for unsupervised syndrome detection.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View