Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Electrochemically Driven Optical Dynamics of Reflectin Protein Films.

Abstract

Neuronally triggered phosphorylation drives the dynamic condensation of reflectin proteins, enabling squid to fine tune the colors reflected from specialized skin cells (iridocytes) for camouflage and communication. Reflectin, the primary component of iridocyte lamellae, forms alternating layers of protein and low refractive index extracellular space within membrane-encapsulated structures, acting as a biologically tunable distributed Bragg reflector. In vivo, reflectin condensation induces osmotic dehydration of these lamellae, reducing their thickness and shifting the wavelength of reflected light. Inspired by this natural mechanism, we demonstrate that electrochemical reduction of imidazolium moieties within the protein provides a reversible and tunable method to control the water volume fraction in reflectin thin films, allowing precise, dynamic modulation of the films refractive index and thickness - mimicking the squids dynamic color adaptation. To unravel the underlying mechanisms, we developed electrochemical correlative ellipsometry and surface plasmon resonance spectroscopy, enabling real-time analysis of optical property changes of reflectin films. This electrochemically driven approach offers unprecedented control over reflectin condensation dynamics. Our findings not only deepen the understanding of biophysical processes governing cephalopod coloration but also pave the way for bio-inspired materials and devices that seamlessly integrate biological principles with synthetic systems to bridge the biotic-abiotic gap.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.