Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory
Title
DESCRIPTION, FIELD TEST AND DATA ANALYSIS OF A CONTROL-SOURCE EM SYSTEM (EM-60)
Permalink
https://escholarship.org/uc/item/9jf2t7wt

Author

Morrison, H. F.
Publication Date
1978-10-01

(

TWO-WEEK LOAN COPY

> This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

```
DESCRIPTION, FIELD TEST AND DATA ANALYSIS OF A
    CONTROLLED-SOURCE EM SYSTEM (EM-60)
```

H.F. Morrison', N.E. Goldstein ${ }^{2}$, M. Hoversten', G. Oppliger', and C. Riveros ${ }^{2}$

1 Department of Materials and Mineral Sciences Engineering Geosciences University of California Berkeley, California 94720

2 Lawrence Berkeley Laboratory Berkeley, California 94720

October 1978

TABLE OF CONTENTS

Page
INTRODUCTION 1

1. THE EM-60 TRANSMITTER 4
List of Figures 4
The Transmitter 6
Magnetic Dipole Moment 13
Field Tests 14
2. A MICROPROCESSOR-BASED RECEIVER FOR THE EM-60 SYSTEM 18
List of Figures 19
List of Tables 20
A Receiver for an EM Prospecting System 21
An Adaptable Receiver Design 29
Simple Operation 29
High Accuracy Phase Measurements 35
Relative Phase Measurements 37
Signal Processing 38
Operations 41
Systems Programs 41
Stored Parameters 41
Control Keys 47
Mode and Control Switches 47
Diagnostic Warning Clocks 49
Memory Test and Memory Error Codes 49
Phase Polarity Conventions 49
The Transform 49
Phase Signs 49
Phase Relative to Channel 1 52
Development System 52
Appendix A: A System Program for a 6 Channel EM Receiver 53
Appendix B: Board Layouts for Microcomputer Signal 97 Processor

Table of Contents

 (continued)Page
1II. GRASS VALLEY FIELD TEST 110
List of Figures 111
Survey Plan 112
Instrumentation and Procedures 112
Method of Interpretation 116
Inversion Algorithm 117
Statistical Evaluation of a Model 119
Combined Data Interpretation 122
Survey Results 123
Appendix A: Tabulation of Results 138
REFERENCES 140

Electrical and electromagnetic (EM) techniques have been shown to be useful for delineating either the gross geological structure or the reservoir region of some convective geothermal systems. This application is based on the relationship between the bulk resistivity of the reservoir region and a complex function involving, among other things, temperature, type and concentration of ionic species, presence of a gas phase, effects from conducting sulfide of clay minerals, and fracture permeability. It has been noted in the literature that liquid-dominated geothermal systems exhibit a lower resistivity than surrounding rocks for several possible reasons: (a) increased ion mobility; (b) a higher concentration of ions; and (c) increased permeability and/or porosity. However, there is evidence that some geothermal reservoirs exhibit higher bulk resistivity than surrounding rock because of a vapor phase (The Geysers) or a porosity loss caused by secondary minerals (Cerro Prieto).

Of the techniques available to determine subsurface resistivities, dc resistivity has been the most widely used, but the magnetotelluric (MT) method has also been used in both reconnaissance and detailed studies; and several controlled-source EM techniques have been tried as well (Keller and Rapolla, 1976; Harthill, 1976; Jackson and Keller, 1972; Ghosh and Hallof, 1973; and Keller, 1970).

In the LBL/U.C. Berkeley evaluation of geophysical techniques for geothermal exploration, a successful test was made in Grass Valley, Nevada, of a prototype frequency-domain EM system (Jain and Morrison, 1976; Jain, 1978). These experiments showed that the EM soundings gave interpreted results that compared well with those from dipole-dipole de resistivity surveys. Based on the need for continued development and demonstration of a field-worthy system (Ward, 1978), and supported through the Department of Energy/Division of Geothermal Energy's Exploration Technology Program, LBL and U.C. Berkeley have developed the $E M-60$ system, the number related to the 60 kW output of the motor generator used.

The system, easily expandable to include time-domain measurements, is designed for use with a large moment, horizontal-coil transmitting antenna. This choice was based on the need to overcome a number of problems en= countered in dc resistivity, MT and existing controlled-source EM systems:
(1) Because no ground contact is needed, the system is better suited to areas where the contact resistances are high, such as sand-covered desert regions or talus slopes on mountains.
(2) A magnetic field detector can be used, thus eliminating the need for long wires, other than the transmitter coil, to be laid out and retrieved.
(3) The transmitter can be installed at a convenient location, an especially helpful feature in terrain where access is limited, and a survey around the transmitter site is conducted by moving the receiver only.
(4) Vertical resistivity soundings are made by varying frequency, not transmitter-receiver separation as in dc resistivity, thus avoiding interpretational difficulties introduced by lateral inhomogeneities.
(5) By generating an EM field over a broad frequency range ($10^{3} \mathrm{~Hz}$ to as low as $10^{-3} \mathrm{~Hz}$), the sounding curves provide both good resolution of the near-surface as well as depth penetration to basement.
(6) The system would not depend on natural field activity, and would therefore provide reliable data in bands where the absence of natural signal often leads to incomplete MT data.

Despite considerable interest in higher frequency EM techniques for mineral exploration throughout much of the world, and for low frequency EM techniques for petroleum exploration in Russia (Vanyan, 1967; Smith, 1963), surprisingly little work on EM soundings have been done in western countries. Compared to the rapid technological advances in seismic reflection, for example, developments in EM techniques have been slow. The difficulty in interpreting $E M$ results even for simple geological settings,
problems in generating and measuring the lowfrequency magnetic fields, and field problems associated with laying out and retrieving long heavy wires, have discouraged efforts to employ EM techniques, even in areas where seismic and other techniques are not useful.

This report, divided into three sections describing the transmitter, the receiver and data interpretations, should show that we have made significant technical advances toward the development of a large moment EM system employing a magnetic dipole source. Hopefully, the system will have practical application in geothermal and other surveys.

THE EM -60 TRANSMITTER

LIST OF FIGURES

Figure 1. The EM-60 in operation in Grass Valley, Nevada. (XBL 789-12515)

Figure 2. A general block diagram of the EM-60 transmitter section. (XBL 788-2663)

Figure 3. The crate with its cover removed, showing the modular arrays of transistor switches and the full-wave rectifier at left. (CBB 788-8381)

Figure 4. Rear of transmitter truck showing the electronics box (top) and crate (bottom) swing out for operations. A 4/0 cable is being attached for tests. (CBB 781-953)

Figure 5. Fundamental period is set at the remote control box which also monitors transmitter operations. (CBB 781-957)

Figure 6. Theoretical and observed dipole moments over the 10^{-3} to $10^{3} \mathrm{~Hz}$ frequency range for a circular loop of \#6 cable. (XBL 788-2664A)

This section gives a brief description of the EM-60 transmitter, its general design and the considerations involved in the selection of a practical coil size and weight for routine field operations. The transmitter was designed with several criteria in mind:
(a) The system should provide a large magnetic moment, greater than 10^{6} MKS at low frequencies,
(b) The system must operate reliably under adverse field conditions with a small field crew,
(c) The system must be both safe and easy to operate; and
(d) The system should be relatively inexpensive so that copies or similar systems may be replicated at a reasonable cost.

Except for the last point, for which we have no basis for judgment or comparison, all the criteria seem to have been met. The transmitter is operated by one man; however, laying out and retrieving the horizontal loop antenna requires a larger crew, the exact number of which would depend on loop weight, geometry and terrain, etc. Electronic schematics and mechanical drawings are not presented here, but are available. The key design feature of the transmitter is the transistorized switching arrays which permit rapid switching of large currents into the loop.

The Transmitter

The EM-60 system is powered by a Hercules gasoline engine linked to an aircraft $60 \mathrm{~kW}, 400 \mathrm{~Hz}, 3 \phi$ alternator. These two components form the motor generator (MG) set, and are mounted in the back of a Dodge one-tonchassis, four-wheel-drive truck (Figure 1). Truck and motor-generator set were selected, in part, on the basis of availability of these components at LBL. The output is full-wave rectified and capable

of providing ± 150 volts, 400 amp to an external load which is a horizontal coil (Figure 2). The block diagram, Figure 2, shows that the direction of current flow through the coil is controlled by one of two transistors. These are actually parallel arrays of 6 to 60 transistors mounted modularly in a box called the "crate" (Figure 3). The crate also houses the full= wave rectifier.

Transistor modules are interchangeable, each consisting of a heat sink and fan to enhance heat dissipation. With 18 to 20 of the modules in place, up to 400 amp may be delivered to the coil. Above the crate is the electronics rack. This houses the amplifiers used to control the transistors in the crate (Figure 4). During travel and storage, crate and electronics boxes are carried internally, protected by a snug-fitting cover attached to the rear of the truck. During operations both are swung away for cooling and easier access.

Separate from the transmitter truck, but connected to it by cable, is the remote control box (Figure 5). This contains a crystal-controlled oscillator and dividers, so that a fundamental period of from 10^{-3} to 10^{3} can be selected. On the panel of the control unit are range and thumbwheel switches for selecting the fundamental period, as well as controls and indicator lights for the transmitter. The remote box may be taken 100-150 feet from the transmitter truck where the motor-generator noise level is lower. It was found, however, that the noise level drops off rapidly away from the truck, even when the louvered side panels are removed.

The operating frequency, f_{0}, the inverse of the selected period, is amplified at the truck and used to turn the switching transistors on and off via the array driver chassis. Since isolation between the load voltages and the truck chassis is desirable, optical couplers link the array driver to the control signals. For the same reason, separate floating voltages are provided for the array driver. The crate controller links the truck to the remote box and houses the control electronics. These chassis are in the upper rack (Figure 4).

CONTROLLED SOURCE EM-60 TRANSMITTER

XBL 788-2663

Figure 2. A general block diagram of the EM-60 transmitter section.

(CBB 788-3381)

Figure 3. The crate with its cover removed, showing the modular arrays of transistor switches and the full-wave rectifier at left.

(CBB 781-953)

Figure 4. Rear of transmitter truck showing the electronics box (top) and crate (bottom) swung out for operations. A $4 / 0$ cable is being attached for tests.

Figure 5. Fundamental period is set at the remote control-box which also monitors transmitter operations.

Magnetic Dipole Moment

For electromagnetic surveys it is usual to desire the largest moment, M, practical or possible. By definition:

$$
\begin{equation*}
M=N I A \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& N=\text { number of turns }, \\
& 1=\text { current in amperes, and } \\
& A=\text { coil area in meters }{ }^{2} .
\end{aligned}
$$

The current, 1, defined by Ohm's Law is:

$$
\begin{equation*}
1=\frac{V}{Z}, \tag{2}
\end{equation*}
$$

and depends on the voltage, V, from the rectifiers and the impedance, z, of the loop.

The EM-60 is a squarewave voltage generator, switching between +150 and -150 volts. At low frequencies, the inductive nature of the coil can be ignored and the moment can be given as

$$
\begin{equation*}
M=\frac{N V A}{R}, \tag{3}
\end{equation*}
$$

where V is ± 150 volts, and R is the resistance of the coil.

Coil resistance is given as:

$$
\begin{equation*}
R=\rho \ell \tag{4}
\end{equation*}
$$

where ρ is the resistance per unit length of wire, and ℓ is the total length of wire in the coil. For a circular coil the area, A, may be expressed in terms of the coil length as

$$
\begin{equation*}
A=\frac{l^{2}}{4 \pi N^{2}} \tag{5}
\end{equation*}
$$

Substituting equations 4 and 5 into equation 3 , the dipole moment is given in terms of the wire parameters useful in planning a field survey,

$$
\begin{equation*}
M=\frac{V \ell}{4 \pi \rho N} \tag{6}
\end{equation*}
$$

This shows that the maximum moment from a given length of wire is produced using only one turn. However, in many field situations, terrain, vegetation, and/or water may dictate the use of smaller area, multi-turn coils. Also important in surveys are the total weight of wire that can be brought into the field and the amount of current that may safely be carried through the wire. Higher currents than those recommended can sometimes be used so long as the heating effects do not pose a fire hazard or create other problems; e.g., a hot wire melting into ice would be difficult to retrieve.

For several wire sizes that have been used or considered for use with the EM-60, we list in Table 1 the minimum wire length considered safe. For these lengths heating is only slightly detectable by hand. Table 1 also shows the corresponding weights for the minimum lengths. Initially, we contemplated using a $4 / 0$ welding cable to realize the 400 400 amp capability of the $E M-60$. This would require laying out and retrieving at least 4 km of cable weighing 4000 kg , not an insignificant task for men and machines. Because LBL does not have field equipment to handle cable of this length and weight, and because the parameters are antithetical to a cost-effective exploration method, field tests and surveys have been conducted with shorter lengths of the smaller \#10 and \#6 cables. Therefore, the EM-60 has been operated well below its full capability, delivering typically ± 63 amperes to the coil.

Field Tests

The EM-60 was given its first full-scale field test in Grass Valley, Nevada during July 1978. The site was chosen because previous electrical and electromagnetic surveys along established geophysical lines had provided us with a subsurface electrical model against which the EM-60 results could be compared. The terrain is flat and open, making loop

TABLE 1

DESIGN CONSIDERATIONS FOR THE EM-60 TRANSMITTER COIL

	WIRE SIZE			
PARAMETER	10	6	2	$4 / 0$
Wire resistance/km (/km)	3.28	1.30	.513	.160
Weight (kg/km) Mlnimum coil length to prevent excessive heating (km) Minimum coil weight (1) to prevent excessive heating (kg) Current carrying capacity of minimum length cable (amps)	49	118	299	955

(1) Weight does not include weight of insulation.
handling easy. The coil used consisted of four turns of \#6 wire, 100 m in diameter and 1372 m in total length. The 115 m of cable not used in the loop provided pigtails to the transmitter truck. Figure 6 shows a comparison of calculated dipole moments for various turn-area combinations and the measured moment for the coil used in Grass Valley. The dipole moments are calculated on the basis of 126 amp peak-to-peak delivered to the coils at low frequency. Depending on coil diameter and number of turns, a cut-off frequency exists above which the dipole moment declines because of the inductive reactance. In practice the measured dipole moment did not quite follow the theoretical curves above the cut-off frequency. This is because the load, due to its reactive nature, caused the motor-generator to labor less at higher frequencies, thus increasing the effective power input to the loop.

Current in the coil was monitored by means of a $0.01 \Omega, 0.1$ percent shunt resistor. This shunt also provided the reference voltage carried to channel 1 of the receiver by means of a twisted pair of wires. The reference voltage served as the current amplitude and phase reference at the microprocessor-based receiver described in Section $\| 1$ of this report.

Except for refueling operations, the transmitter operated continuously and without failure during the five days of field operations. During this time the ambient temperature exceeded $42^{\circ} \mathrm{C}$ in the shade, and the longest continuous run was nine hours.

XBL 788-2664A

Figure 6. Theoretical and observed dipole moments over the 10^{-3} to $10^{3} \mathrm{~Hz}$ frequency range for a circular loop of \#6 cable.

LIST OF FIGURES

Page

Figure 1. A low frequency electromagnetic prospecting
system. (XBL 786-2575) 22

Figure 2. EM receiver station. (XBL 786-2576)23

Figure 3. Liquid Crystal Display Format. 25
Figure 4. System hardware structure for M6800 microcomputer signal processor. (XBL 786-2578)

Figure 5. Maximum phase error using 16-bit fixed point constants. Fortran simulation of microm computer arithmetic.

Figure 6. M6800 microcomputer signal processor.
(CBB 7810-13519)
Figure 7. Simplified program structure for M6800 micro- 40 computer signal processor.

Figure 8. LCD and keypad interface. (XBL 7810-11974)
Figure 9. Digital to analog converter. (XBL 7810-11975) 99
Figure 10. Interface board layout. (XBL 7810-11976) 100
Figure 11. Programmable sample and cycle timer.
(XBL 7810-11977)
Figure 12. Programmable sample and cycle timer.
(XBL 7810-11978)
Figure 13. Data acquisition board. (XBL 7810-11979)
Figure 14. Data acquisition board layout. (XBL 7810-11980) 104
Figure 15. 2K RAM section on memory board. (XBL 7810-11981) 105
Figure 16. $5 K$ EPROM section on memory board. (XBL 7810-11982) 106
Figure 17. Memory board layout. (XBL 7810-11983) 107
$\begin{array}{ll}\text { Figure 18. CPU board. (XBL 7810-11984) } & 108\end{array}$
Figure 19. CPU board layout. (XBL 7810-11973) 109

Page

Table 1. Thermal Printer Output Format 26
Table 2. Chart Recorder and Oscilloscope Display 27
$\begin{array}{ll}\text { Table 3. } & \text { M6800 Microcomputer Signal Processor Programmed } \\ & \\ & \text { as a Six Channel Waveform Stacking, Harmonic } \\ \text { Analyzer }\end{array}$
Table 4. M6800 Signal Processor Backplane 31
Table 5. M6800 Microcomputer Signal Processor Special 32 Features

Table 6. Computer Selection of Number of Points per Cycle 33 and Analog to Digital Conversion Word Size

Table 7. Receiver Operation Procedure 34
Table 8. System Programs 42
Table 9. Numerical Control Parameters and Stored 43 Transform Results

Table 10. Other Stored Parameters 44
Table 11. Control Keys 45
Table 12. Mode Switches 46
Table 13. Control Switches 48
Table 14. Warning Codes 50
Table 15. Memory Error Codes 51

A Receiver for an EM Prospecting System

This section describes a programmable, multichannel, multi-frequency, phase-sensitive receiver. The receiver was designed and built in the Engineering Geoscience Group, Department of Materials Science and Mineral Engineering, U.C. Berkeley, as part of a Lawrence Berkeley Laboratory project to develop for geothermal exploration, a largemoment electrom magnetic prospecting system. The transmitter for this system, described in the previous section, consists of a $60-\mathrm{kw}$ motor-generator, powertransister switching circuitry and a horizontal loop antenna. At a receiver station the magnetic fields are detected by means of a $3=$ component SQUID magnetometer. The signals are then conditioned by a set of amplifier-filters, and processed by the microcomputer-controlled frequency-domain receiver (Figures 1 and 2). The electric field components may also be detected and processed if so desired. Field tests at Grass Valley, Nevada, described in the following section, showed the system capable of obtaining well-defined sounding curves (amplitude and phase of magnetic fields) from 1 kHz down to 0.1 Hz . Transmitter-receiver separations of 1 to 2 km were used with transmitter moments of about $2 \times 10^{6} \mathrm{MKS}$.

Measurements at frequencies below 0.1 Hz were made, but the statistical error grows larger with decreasing frequency because of the rapidly worsening signal-tomoise ratio. The noise is geomagnetic fluctuations, the spectrum of which varies approximately as $/ / \mathrm{f}$. Although the receiver is designed for frequencies to $10^{-3} \mathrm{~Hz}$ (1000 second period), obtaining useful information below $10^{-1} \mathrm{~Hz}$ would depend on longer averaging times and larger primary fields than used during tests. Low frequency information might also be obtained by means of a magnetic gradiometer detector to cancel common geomagnetic noise.

A low frequency electromagnetic prospecting system

Figure 1. A low frequency electromagnetic prospecting system.

EM Receiver station

XBL 786-2576

Figure 2. EM receiver station.

The field tests showed it was practical to analyze the first 4 odd harmonics (1, 3, 5 and 7) in the transmitted square-wave at one time. This reduces the number of frequency changes at the transmitter to only one per decade for frequencies below 100 Hz . In tests, overlapping spectral estimates were obtained from closely-spaced fundamental and harmonic frequencies, and the comparisons were good.

Through the keypad the operator is able to set the parameters controlling the signal processing, such as:
a) Period of the fundamental current waveform.
b) The maximum number of odd harmonics of the waveform, up to 16, to be measured.
c) The number of cycles of the signal to be averaged prior to Fourier decomposition.
d) The number of input channels (up to 6; e.g., 3 magnetic and 2 telluric and a reference from the transmitter).

Amplitude and phase information at each harmonic can be displayed sequentially on the receiver's five-digit LCD (Figure 3). However, it is more efficient to record the data on the optional six-column thermal printer. Table 1 gives an example of the thermal printer output format. In addition, the operator may call routines which display the stored wave forms on an oscilloscope, or sequentially dump them to a chart recorder. Descriptions and examples of chart recorder and oscilloscope displays are given in Table 2.

Table 3 lists the receiver's basic specifications and special features.

Figure 3. Liquid Crystal Display Format.

TABLE 1

THERMAL PRINTER OUTPUT FORMAT

1. When the rectangular mode is used, the in-phase or real part replaces amplitude and the quadrature or imaginary part replaces phase. Note that the real and imagniary parts are not scaled by the constant 1.19266 to obtain millivolts and are not phase corrected for the sampling skew. See Table 10 key no. 1.

TABLE 2

CHART RECORDER AND OSCILLOSCOPE DISPLAY

Example of a chart recorder dump of six channels of a digitally stored sinewave at 16 points per cycle. Paper moved to left.

CHART AND SCOPE DISPLAY

Output voltage range

Digital to analog conversion resolution

$$
+/-5 \text { volts }
$$

8 bits (39.6mvolts/bit)

CHART RECORDER DISPLAY

Points per cycle
64
16
4

OSCILLOSCOPE DISPLAY

Points per cycle	Refresh rate	Display time window
64	45 HZ	22 m sec
16	150 HZ	6.7 m sec
4	350 Hz	2.9 m sec

TABLE 3

M6800 MICROCOMPUTER SIGNAL PROCESSOR
PROGRAMMED AS A
SIX CHANNEL WAVEFORM STACKING, HARMONIC ANALYZER

FREQUENCY RANGE	$\begin{aligned} & 1.01 \times 10^{-3} \mathrm{~Hz} \text { to } 1.0 \mathrm{kHz} \\ & (990 \mathrm{sec} \text { to } 1.0 \mathrm{msec}) \end{aligned}$
PHASE ACCURACY	Better than 0.05 degrees
NUMBER OF CYCLES AVERAGED	Up to 2^{15} cycles
NUMBER OF POINTS SAMPLED	1.0 KHz to 101 Hz : 4 pts/cycle
PER CYCLE PER CHANNEL	100 Hz to $13 \mathrm{~Hz}: 16 \mathrm{pts} / \mathrm{cyc}$ le
	12.5 Hz to 0.00101 Hz : 64 pts/cycle
NUMBER OF HARMONICS	Up to 32,8 , or 2 harmonics for 64, 16 , or 4 pts cycle, respectively
ANALOG INPUTS	
CONFIGURATION	Six single-ended or differential channels
INPUT VOLTAGE	$\pm 5 \mathrm{~V}$ signal voltage
$\frac{\text { ANALOG TO DIGITAL }}{\text { COHIIERSIONRESOLUTION }} 12$ bits binary	
SYNCHRONIZATION SIGNAL	7.68 MHz , TTL internal or external, switch selectable
PHASE REFERENCE	Phases of harmonics in the channel 1 waveform serve as phase references for channels 2 to 6
DETECTION ALGORITHM	16 and 4 pts/cycle (8 bit data resolution) i. acquire 8 cycles of data ii. stack data, repeat i iii. sine and cosine transform stacked data
	16 and 64 pts/cycle (12 bit data resolution) i. acquire and stack data continuously ii. sine and cosine and transform stacked data
QUANTITIES OUTPUT	Amplitudes, phases, number of cycles averaged, harmonic number, period of fundamental, station no., and run no.
DATA OUTPUT FORM	5 digit LCD and 6 column thermal printer
POWER CONSUMPTION	10-15 watts
INTERNAL BATTERY LIFE	8-10 hours contimuous
SIZE AND WEIGHT	$9 \times 16 \times 16$ inches, 35 lbs.

An Adaptable Receiver Design

Although the instrument was designed as a specialized receiver for a particular EM system, it has a general structure adaptable to many signal processing tasks in geophysics. Perhaps the most important feature of this structure is programmability. This feature allows one to modify the function of the instrument through a programming change rather than by time-consuming hardware modifications.

The receiver's hardware is also designed for flexibility. The hardware is organized around a backplane bus containing the address, data, and control lines for the microcomputer (Figure 4 and Table 4). The chassis has eight circuit-card slots connected to this bus. Five slots are used in the present system; the other three may be used for system expansion; e.g., additional memory, special control boards, or analog filter circuits.

These features, combined with the instrument's calculator-like operation and portability, make it extremely promising as a general purpose receiver for exploration geophysics.

At present, a time-domain EM program is under development for the receiver, and other program additions are being considered.

Simple Operation

The receiver is simple to operate. When power is turned on or the reset switch is activated, the receiver automatically performs self-test routines and initializes all control parameters to bring itself to an operational state (Table 5). The program automatically selects the optimal number of points per cycle and analog to digital conversion word sizes for data acquisition operations (Table 6). Although the user has the option to select several control switches and parameters to increase the efficiency of the signal processing operations, the operator is required only to set the period and the number of cycles of waveform to be averaged, and call a signal processing routine. Table 7 gives a list of the steps the operator follows. These procedures will be discussed in more detial in following sections.

XBL 786-2578
Figure 4. System hardware structure for M6800 microcomputer signal processor.

TABLE 4

M6800 SIGNAL PROCESSOR BACKPLANE

PIN NO.	NAME
1	-15^{V}
2	-15^{v}
3	$+15^{v}$
4	$+15^{\mathrm{V}}$
5	0^{V}
6	0^{v}
7	$+5^{v}$
8	$+5^{2}$
9	AD (LSB)
10	Al
11	A2
12	A3
13	A 4
14	A5
15	A6
16	A7
17	A8
18	A9
19	A10
20	All
21	A12
22	A13
23	A14
24	A15
25	$D \emptyset(L S B)$
26	D1
27	D2
28	D3

PIN NO.	NAME
29	D4
30	D5
31	D6
32	07
33	
34	
35	
36	
37	
38	
39	NMI
40	IRQ
41	D2
42	VMA
43	R/W
44	01
45	$\overline{\text { RST }}$
46	HALT
47	
48	$300 \mathrm{BAUD}(\mathrm{x} 16)$
49	PAGE DO
50	PAGE FF
51	$+5^{\text {V }}$
52	$+5^{\text {V }}$
53	0^{8}
54	0^{*}
55	-9^{v}
56	$-9^{\text {x }}$

TABLE 5
M6800 MICROCOMPUTER SIGNAL PROCESSOR
special features

```
1. VERSATILE CONTROL ROUTINES ALLOW AUTOMATIC CALCULATION and printout of single or selected groups of harmonics (E.G. ODD HARMONICS, 15 TH THROUGH 1ST).
11. CHART RECORDER DUMP OF STORED SIGNALS.
111. OSCILLOSCOPE DISPLAY OF STORED SIGNALS.
iv. VOLT METER FUNCTION - DISPLAYS VOLTAGE ON SELEGTED CHANNEL IN MILLIVOLTS. THIS ROUTINE IS USED TO SET GAIN LEVELS. THE System supply voltage may be checked by examining the voltage ON CHANNEL 7.
V. maximum value function - finds maximum value on each of the STORED WAVEFORMS AND DISPLAYS VALUE IN MILLIVOLTS.
VI. AUDIO TRANSDUCER ALERTS OPERATOR TO COMPLETION OF LONG SIGNAL AVERAGING OPERATIONS.
VII. AUTOMATIC SYSTEM TEST ROUTINES:
A) TESTS 2 K OF DATA STORAGE MEMORY (RAM) IDENTIFYING ANY dEFECTIVE MEMORY CHIP ( 16 OF THESE).
B) TESTS 4K OF PROGRAM STORAGE MEMORY (ROM) IDENTIFYING DEFECTIVE ROM CHIP ( 4 OF THESE).
C) TESTS FOR PRESENCE OF TIMING SIGNALS: CHECKS RATIOS OF SAMPLE TO CYCLE PULSES AT EACH OF 4, 16, AND 64 POINTS PER CYCLE: DISPLAYS ERROR-IDENTIFYING-CODES IF ERRORS ARE DETECTED.
D) WRITES TEST SQUARE WAVE INTO MEMORY FOR CHECK OUT OF TRANSFORM ROUTINES.
E) TESTS LIQUID CRYSTAL DISPLAY AND PRINTER.
```

TABLE 6

COMPUTER SEIECTION OF NO. OF POINTS PER CYCLE AND ANALOG TO DIGITAL CONVERSION WORD SIZE.

POINTS PER CYCLE	PERIOD RANGE
64	$\begin{gathered} 990 \mathrm{sec} \text { THROUGH } 80 \mathrm{msec} \\ (0.00101 \mathrm{HZ}) \end{gathered}$
16	79 msec THROUGH 10 msec $(12.658 \mathrm{HZ})$ $(100 \mathrm{HZ})$
4	$\begin{array}{r} 9.0 \mathrm{msec} \text { THROUGH } 1.0 \mathrm{msec} \\ (111.11 \mathrm{HZ}) \quad(1.0 \mathrm{KHZ}) \end{array}$

ANALOG TO DIGITAL
CONVERSION WORD SIZE
PERIOD RANGE

12 BIT WORDS	990 sec THROUGH 20 sec $(0.00101 \mathrm{HZ})$ $(50 \mathrm{HZ})$ 8 BIT WORDS 19 msec THROUGH 1.0 msec $(52.63 \mathrm{HZ})$ $(1.0 \mathrm{KHZ})$

TABLE 7

RECEIVER OPERATION PROGEDURE

Part 1 Set Control Switches and Connect Cables

- Select internal or external 12 volt power source.
- Turn receiver power on.
. Select internal or external SYNC (7.68 MHZ).
- Put run/load switch in run position.
- Place mode switches in selected positions.
- Press test switch on printer, before connecting printer.
- Connect printer, turn printer power on.
- Connect input and output cables.

Part 2 System Test

- Press reset - system test.
- Look for error codes and examine checksums.
(see section on system test)

Part 3 Set Parameters

- Enter Period: Press (PER), (NO.), (NO.). (NO.), (LCK PER)
- Enter Harmonic No.: Press (HRM), (NO.), (NO.), (RTN)
- Enter No, of Cyc. Avg.: Press (NO.CYC), (NO.), (NO.), (RTN)
- Enter No. of Channels: Press (NO.CHL), (NO.), (NO.), (RTN)
- Enter Station No.: Press (MEM), (2), (NO.), (NO.), (RTN)

Part 4 Call System Programs

- Call volt meter routine for each channel and set gains. Press (RUN), (VLT), (NO.).
- Call one of the accuisition routines e. g. (RUN), (Al)
- Call scope display routine (RUN), (OSC), (1) or call chart display routine (RUN), (CHT)

High Accuracy Phase Measurements

The receiver was designed to make high accuracy phase and amplitude measurements under conditions of low signal-tomoise ratios. High accuracy measurements are particularly important for electromagnetic soundings at frequencies below about 10 Hz , where phase accuracies of 0.1 degree may be required to invert the soundings reliably.

The phase accuracy obtained from a given sinusoidal waveform, excluding aliasing, is a function of the signal or data resolution, the number of points per cycle, and the precision of the transform arithmetic. Figure 5 shows the maximum phase error that can be expected with a given resolution and number of points per cycle. If the signal-to-noise level of the measured signal is known, Figure 5 may be used to estimate the number of times the waveform must be stacked to obtain a given phase accuracy. One may assume $N^{-\frac{1}{2}}$ reduction of noise.

Under favorable signal-to-noise conditions, exceptionally accurate phase measurements may be made. For example, laboratory tests have shown the receiver capable of measuring relative phases with accuracies better than 0.002 degree below $12.5 \mathrm{~Hz}, 0.006$ degree below 100 Hz , and 0.05 degree below 1000 Hz .

The periods of the harmonics in the stacked waveforms correspond exactly to those analyzed by the sine and cosine transform routine, by definition of the harmonic content of a periodic waveform. This precise matching of waveform periods eliminates spectral smearing resulting from the finite data lengths, and makes the high accuracy phase measurements possible.

Figure 5. Maximum phase error using 16 -bit fixed point constants. Fortran simulation of microcomputer arithmetic.

Relative Phase Measurements

The receiver operates as an independent unit, in the sense that it does not depend on control signals from the transmitter. The transmitter and receiver run asynchronously; each unit is driven by a separate crystal clock, having a frequency accuracy requirement of only 100 ppm . Phase measurements relative to the transmitter current are made by processing the transmitter current waveform (on channel 1) along with the magnetic field signals (on the other channels). The receiver then computes phase relative to the transmitter current by subtracting the calculated phase of the transmitter current from that of the other channels' phases. Any signal can be put on channel I to act as the phase reference for the other 5 channels.

The receiver acts as a narrow-band digital filter. The accuracy of the filter's center frequency is related directly to the accuracy of the clock controlling the signal-sampling circuitry. The sharpness or selectivity of the filter increases with the number of cycles averaged. If the receiver and transmitter clocks are not locked together. the transmitter and receiver will be operating at slightly different frequencies. This difference in frequencies puts a restriction on how sharp the receiver's digital filtter may be made before the transmitted signal begins to be filtered out. Using clocks of 10 ppm accuracy, several thousand cycles of transmitter signal may be averaged with no detrimental effects due to filter selectivity.

It is also possible to lock the transmitter and receiver clocks together through the external 7.68 MHz clock input on the receiver. This requires telemetering the transmitter clock signal to the receiver but allows unrestricted stacking of the waveforms.

Frequency domain EM soundings can be made with the receiver in two ways. One approach involves the normalization of the phase and amplitude spectra of the magnetic field by the spectra of the transmitter current. This method requires that the voltage across a shunt resistor in the transmitter loop be brought to channel 1 of the receiver via a twisted pair of wires. These wires are the only physical connection between the transmitter and receiver, and provide an absolute phase and amplitude reference for the system. The second approach eliminates the need for a current reference from the transmitter by analyzing phase and amplitude relations between the vertical and horizontal magnetic fields, which define a polarization ellipse. The essential information on earth conductivity structures is contained in EM soundings produced by either the transmitter current reference or polarization ellipse approaches.

SIGNAL PROCESSING

Table 3 lists the principal features of the receiver, which is built around the $M 6800$ microprocessor (Figure 6). The simplified program structure is shown in Figure 7, and the hardware structure is shown in Figure 4. A multichannel, 12-bit analog-to-digital conversion module is used to sequentially sample six channels of electrical signals. The sampled waveforms from each of the channels are stacked in memory to improve the signal-to-noise ratio, then normalized by the number of cycles averaged. The discrete Fourier transform is then obtained using a table of 16 -bit sine and cosine constants and a software multiply routine using 16-bit fixed point operands and producing 32-bit products. In-phase and quadrature results from the transform are converted to phase (in degrees) and amplitude (in millivolts) using a CORDIC rotation method. Next, the phase-shift errors introduced by the sequential sampling of the six channels are corrected, and the phase of channel 1 is subtracted from the phases of channels 2 through 6 . Thus, phases for signals on channels 2 through 6 are all relative to the phase of the signal on channel 1 . The binary results of the processing are converted to $B C D$ and printed out on a thermal printer. Table 1 gives

(CBB 7810-13519)

Figure 6. M6800 microcomputer signal processor.

Figure 7. Simplified program structure for M6800 microcomputer signal processor.
an example of the output format from the thermal printer. In this case, a common signal was entered onto all six channels. Amplitudes agree to within ± 0.3 millivolts, and the maximum phase error, on channel 6, is 0.0056 degrees (.0977 milliradians).

OPERATIONS

Table 5 lists special features of the receiver. In addition to the keypad accessible signal processing, waveform display and utility routines, the receiver contains a system test routine designed to test vital sections of system hardware. The system test routine is automatically called when the receiver is powered up and each time the reset switch is pressed. The automatic test programs are listed in Table 5 . Sections V|I $A=E$.

Systems Programs

The receiver has ten keypad accessible system programs which allow the operator to control the instrument's function. These programs are called by pressing the RUN key followed by the number key corresponding to the selected program. The key symbols and programs are defined in Table 8.

Stored Parameters

Three types of stored values may be accessed from the keypad:
(1) operator-set control parameters, e.g., number of cycles averaged;
(2) programmet parameters that may be examined by the operator, e.g., number of points per cycles; (3) signal processing results, e.g., phase and amplitude. The more frequently used parameters have been assigned separate control keys for faster access; less frequently used parameters are read by pressing MEM, then the number key associated with the particular parameter. Key symbols and parameter descriptions are given in Tables 9 and 10.
table 8

SYSTEM PROGRAMS

Key Symbol	The RUN key followed by the program key number given on left calls ${ }^{A}$ the following programs:
$\begin{array}{r} 1 \\ \text { A1 } \end{array}$	Acquires a set of signals at the selected period and averages the selected number of cycles; then transforms and prints a single harmonic defined by HRM.
$\begin{gathered} 4 \\ \text { AEO } \end{gathered}$	Acquires signals as the above program. Then transforms and prints every other harmonic beginning with HRM down through the first harmonic.
$\begin{gathered} 7 \\ A A L \end{gathered}$	Acquires signals as above program. Then transforms and prints all harmonics beginning with HRM down through the first harmonic.
$\begin{array}{r} 2 \\ \mathrm{~T} \end{array}$	Transforms and prints one harmonic defined by HRM.
$\stackrel{5}{T E O}$	Transforms and prints every other harmonic beginning with HRM down through the first harmonic.
$\begin{gathered} 8 \\ T A L \end{gathered}$	Transforms and prints all harmonics beginning with HRM down through the first harmonic.
$\begin{gathered} 6 \\ \text { CHT } \end{gathered}$	Dumps 6 channels of stored signals to chart recorder. See display format note. The keypad is not functional during this dump.
$\begin{gathered} 0 \\ \text { OSC } \end{gathered}$	When followed by a number key (1 to 6), displays 6 channels of stored signals on oscilloscope. Scope trigger is positioned in front of channel's data corresponding to previously entered number. Trigger position may be changed any number of times. Exit by pressing RTN. (Refresh rate is 45 Hz).
$\begin{gathered} 6 \\ \operatorname{MAX} \end{gathered}$	When followed by a number key (1 to 6), for channel number, displays voltage (in millivolts) present on selected channel. The sampling frequency is 6 times the number of points per cycle.
	Channel seven is internally connected to the +5 V supply line. Exit this routine by pressing RTN.
RTN	No program is called. Returns control to operating system.

TABLE 9

NUMERICAL CONTROL PARAMETERS
AND
STORED TRANSFORM RESULTS.
Key
Symbol
HRM Harmonic Number
Range 01 through (PTS/CYCLE)/2. RTN closes location.

No. Number of Cycles Averaged
Raises 2 to power entered.
Range: 2^{0} through 2^{15} or 1 through 32,768
RTN displays in decimal the number of cycles averaged and closes the location.

PER Period in milliseconds
e.g. $1.2 \quad 3=1.2 \times 10^{3} \mathrm{msec}$

No leading zeros; do not enter decimal point (range 9.95 through
1.0 0). Period set by following entry of 3 digits by LCK RER RTN
results in no change in period and closes location.

No. Number of Channels
CHL

AMP
Amplitude and Phase or (real and imaginary)
REL
when this key is followed by a number 1 through 6 (Channel No.)
and display shows value for that channel.
PHS
IMG

TABLE 10

OTHER STORED PARAMETERS

The MEM key followed by no. key accesses the following: key no.

0 Points per cycle. 64, \#16 or 4. set by program. Function of period.
1 Phase correction. Phase shift due to sampling time skew.
Should be subtracted from channel N as ($N-1$) (PHASE COR) when using rectangular mode. Set by program. Function of harmonic and PTS/CYC.

2 Station number. Operator set. A two digitvalue with range of 00 through 99.

3 Run number. Operator set and program incremented each time a new set of data is acquired. A two digitvalue with range of 00 through 99.
4. Phase accuracy control for rectangular to polar conversion. Range 03 to 06. Parameter is initialized to 04.

04 produces 0.014 degree accuracy with a maximum calculation time of $2 \mathrm{sec} /$ channel.

06 produces 0.0035 degree accuracy with a maximum calculation time of $8 \mathrm{sec} /$ channel.

TABLE 11

CONTROL KEYS

Key
Symbol
RUN Key calls one of ten programs defined by number keys. (See Table V for the list of system programs.

RTN Closes open parameter locations; and for system programs OSC, MAX, and VLT. It returns control to the operating system.

LCK Sends entered period to programmable sample timing board. PER

RUN When followed by key no. \emptyset causes program to jump to next page of memory. This page is optional and user defined. System control or diagnostic programs may be placed on this page to extend the degree of specialization of this system, e.g., an IP program computing percent frequency effeot.

TABLE 12

MODE SWITCHES

1
RECT or POLAR
Selects mode in which transformed values will be presented. (Note: Rectangular mode values are not phase corrected for sampling skew and are not scaled by the constant (1.192659) to obtain values in millivolts per root HZ . Polar values have all corrections applied.) This switch is read by program at the end of the SIN-COS transform routine.

2 WAIT FOR CYCLE PULSE
Causes acquisition routines to wait for the beginning of next cycle before starting data acquistion. It is useful when working with periods greater than about 2 seconds, in that when deactivated it eliminates the waiting period before the beginning of the next cycle. This switch is read by the program for periods greater than $20 \mathrm{~ms}(50 \mathrm{~Hz}$) only. Acquisition routines with smaller periods always wait for the cycle pulse.

3 REPEAT
Causes any of the three data acquisition routines to repeat their processing and printing operations until the switch is turned off.

Also causes the system test routine to be repeatedly called.
4 DATA PROJECT
Prevents accidental overwriting of data sets in memory. The acquisition routines read this switch before acquiring new data sets.

During operations, the numerical control parameters (Part 3, Table 7.) must be entered correctly, but not necessarily in a particular order. Table 9 provides detailed descriptions and examples of how the variables must be entered. Table 10 lists other stored parameters. The number of points-per-cycle sampled and phase corrections are set up by the program, but these values may be examined by the operator through the keypad. The phase accuracy control determines the accuracy of the rectangular-to-polar conversion, and is preset automatically during system initialization. The only parameters that the operator may wish to change are the station number and the run number, which are used for data identification on the printer. The run number may be initialized to 0 each time transmission of a new fundamental period begins. After each averaging operation the run number will be automatically incremented.

Control Keys

There are four control keys. Two of these are used to call programs and the other two close memory locations after values have been entered. The control keys are described in Table ll.

Mode and Control Switches

There are four mode switches located in the upper left corner of the receiver front panel. These switches provide the following options; (1) rectangular or polar formats for the Fourier transform results; (2) waiting or not waiting for the beginning of the next waveform cycle before acquiring new data; (3) repeating the data collection and processing procedures or stopping after one operation; and, (4) protecting the waveforms stored in memory from being over-written or normal memory operation. These switches are described in Table 12.

In addition, there are four control switches in the center of the front panel (Table 13). Left to pight the switches are used to: (1) select regular operation (RUN) or a program loading mode; (2) interrupt an executing program; (3) reset and test the system; and, (4) select internal or external synchronization clocks.

TABLE 13

CONTROL SWITCHES

RESET - SYSTEM TEST

Momentary contact causes instrument to begin the system test sequence, testing memory and timing and initializing all system parameters. (See system test routine description.)

INTERRUPT

Momentary contact will interrupt and terminate the execution of any program. Control is given back to the operating system, parameters are not effected.

RUN/LOAD
Selects one of two sets of RESET and INTERRUPT vectors. RUN
is the standard set for system operation. The load set corresponds
to the Motorola MIKBUG vector set. If a MIKBUG oriented TTY
interface board is present, programs may be loaded into memory and examined when this switch is in the load position. This switch has the potential to be used to select between two operating systems.

SYNC INT/EXT
Selects between internal and external 7.6800 MHz clocks for data sampling timing.

Diagnostic Warning Clocks

Diagnostic warning codes are provided to aid the operator in identifying incorrectly set parameters or system malfunctions. When an error is detected, the appropriate warning code is displayed on the two leastsignificant digits of the display; and in most cases, the program is then halted, disabling the keypad. When the displayed code corresponds to an improperly set parameter, the parameter may be re-entered after the interrupt switch is pressed. The warning codes are defined in Table 14.

Memory Test and Memory Error Codes

As part of the system test routine, the data and proaram memories are checked for errors. If a data memory (RAM) error is found, the program halts and a code identifying the defective chip is displayed. (See the RAM error codes in Table 15). The program memory (PROM) test routine sequentially calculates and displays a checksum for each of the IK PROM chips. Comparison of the displayed checksums with the correct values given in Table 15 allows identification of defective chips. (See the Memory Board Layout drawing, Figure 17, for chip locations.)

PHASE POLARITY CONVENTIONS

The Transform

Signals are SINE and COSINE transformed using an $e^{-i \omega t}$ convention (i.e. -sinwt for sine transform and coswt for cosine transform).

Phase Signs

If a wave crest arrives prior to the crest of another wave of zero phase, the former wave is defined to have a positive phase advance.

TABLE 14

WARNING CODES

H1 llegal number of cycles averaged

H3 Illegal period

H6 Waiting for cycle pulse
H7 Waiting for sample pulse group
H8 Incorrect ratio of sample to cycle pulses
HH Incorrect use of AMP or PHS keys

TABLE 15
 MEMORY ERROR CODES

RAM ERROR CODES
FORMAT: A0105
$\left[\begin{array}{l}1 \\ \hline\end{array}\right.$
1 4 K no. 1 to 4 for 1 st K

PROM CHECK SUMS

Each checksum is displayed for 1 sec .
1PP 6
$2 P P-P$

3PP5L
4 LPP 1 P

Phase Relative to Channel 1

The computed phase on channels 2 through 6 are relative to channel I phase; that is, channel 1 phase is subtracted from the phases on the other channels.

The phase on channel I is measured relative to the beginning of the cycle pulse. This pulse has a precision period matching that of the transmitter, but the two are asynchronous.

DEVELOPMENT SYSTEM

Programs for this system were developed using a CDC COMPASS-based cross assembler, written by John Wood, Lawrence Berkeley Laboratory computer consultant. The source program was written and edited in the Geoscience Engineering Laboratory on a ADM-3 CRT Terminal using the NETED interactive editing program. After assembly the machine code was written onto a cassette tape and loaded into the development hardware for debugging. The development hardware consists of the EM receiver with an extra RAM memory board to simulate PROM and a teletype interface board with a MIKBUG operating system.

APPENDIX A

A SYSTEM PROGRAM FOR A 6-CHANNEL EM RECEIVER

FLAGI?	EQU	$0=49$	1 SYTE EQ\&	IF 12 BIT	ADC WORCS APE	USEE
DATAB	EQU	B 544	2			
PSMBOT	EQU	$0=4 \mathrm{C}$	2			
DTPTCH	EQU		1 THIS VMLUE	MUST LEAD	Prevch	
PTCYCH	EQU		1			
VAR	EQU	0 ± 50	SETS LOCATION	9F RLOCK	OF VARTASLES IN	PAM
cycavg	EOU	VAR	1 BYIE			
NCYCLE	EQU	VAR+1	2 QYTES			
PTSCVC	EQU	VAR ${ }^{\text {d }} 3$	1			
HEMNTC	EQU		1			
CNTINC	EQU	VARG5	1			
CNLPPY	EOU	VARE6	1			
NCMPR	EQU	VAR? ${ }^{\text {¢ }}$	1			
NOSuF	Fou	VAkcs	1			

$\begin{aligned} & \text { SYSTEM } \\ & \text { SYSTST } \\ & \text { RAMATN } \end{aligned}$	TEST	CHECKS	$2 K$	RAM AND 4 K ROM，WRITES SQUAREWAVE INTO MEM \％
	BRA	RAMCK		ERANCH TO RAM GHECK
	JSR	TTMERT		DC TEST OF SAMPLE AND CYClE PULSES
	JSR	TESTES		＊READ SWI YCH 3
	ENE	SYSTST		＊If SET REPEAT RAM ANO PULSE TESTS
	LOAm	－ $0=C \mathrm{C}$		＊SET UP LCD AS KPPXX TO INDIC星YE PROM
	STAA	Psabl		－PLACE PP IN DIGXTS 3 AND 4
	Cl退边			
	60x	CBEGTM		BECENNING OF ROM
	STX	DATPT		SAVE
PROMLP	JSp	PROMCK		CREATE CHECK SUM ON $2 K$ OF PROM
	INCE			INC 1K CHIFF COJNTER
	STA	P成的1		PGACE CHECK SUM TN GOWEST 2 ETGTIS ON LCO
	STAB	PI晨2		PLACE CHIP NO．IN 5 TH OTGIT PCSITICM ON LCD
	LDK	－ 0 Efbe		
	JSR	DELAYB		DEA Y OF 900000 MACHINE CYCLES PER CALb
	CMPB	¢04		IF CHIP NO．EQU 4 QUIT PROM CHECK
	gNE	PRGM $P^{\text {P }}$		
	JSR	LOMEM		LOAD MEMORY WEMH SQUAREWAVE FOR TESTS
	COAA	C05s8		＊LOAD \％\％\％8－INTO LCD
	STAA	PIAA 1		＊ 10 TES ALL bCO SEGMENTS
	STAA	PIAB1		＊
	LDAA	P日 58		呂
	STAA	PTAA2		8
	LDAA	10503		\％
	STA易	PIABZ		\％
	JSR	PHMON		PRINTER POWER ON
	JSR	PRNT		＊PRTNT－ 8.8 .8 .8 .8
	JSR	PRNT		＊THICE
	JSR	PWROFF		PRINTER POWER SFF
	dSR	INZVAR		TAITEALIRE YARIAELES
	JMP	CK10CP		TESYS COMPLETE GO 10 MATN PROGAAM

PAMCK LOX REAMSTE LCGATION OF STARY OF CHECK
LOAA TOEDD＊DTSPLAY（AAAAA ON LCD
STAA PIAAS
STAA PIABE
$\angle D A A \quad$ OEOD

TNCA SET ACCA TO 1

** STORES PERIOD AND SET PEE 台NT POST CCUNTERS B


```
*% INITTALSIRE VARTAEEES
INEVAR CDAA BO=9C
    LDK 10=0050
```

NO OF BYIES TD BE CGEARED
STARY OF SECTION TO BE CLEARED

JSR	CLRMEM	CLEAR MEMORY
INC	HARM10	
INC	HR MNTC	
INC	NGYCleg	
LoAA	14	
STAA	q0TACC	SET ARCTAN FM MCCURACY
JSR	frdest	SET FTSICYC AND PRE AND POST COUNTERS
LOAA	10＝06	\％
STAB	NCHPR	＊SET NO，CF CHANMELS CPERATEO OR
QTS		


```
DELAY1 LDX IOESABL PRESET DELAY 87Z7% CYCLES
DELAYS STX SETCHZ
DELAYZ DEC SRTEN2
    GHE OLYLPL
    RTS 
OLYLPI DEC SRTCHS
    EEO DELAYZ
    ERA DLYLPL
    RYS
```


*
BEEF LDAA IOEFC * ERING LIME CER HTGH FOR BEEPER
STAA CPIABS *
LOX C0=0462 帚
GSR DELAYS 昜 DELAY

STA CPTAQS क ERING CGZ LOW FOR 日EEPER OFF
RTS

```
* ACTIYATE ONE ROW ON KEYPAD, TEST COLUMNS FOR RESPONSE %
LOTST STAA PIABS ACTIUCTE ROW
    LDAA PIAAS READ COLUMN
    INCB
    COMA
    ANDA COESF
    RTS
```

* WNTERPRET PRESSED KEY 算
INTP ASLS
ASLB
ASLB
GSR DELAYS
DECB
$10 x \quad 10=F 901$
STK SRTCH2
LDOP1 INC SRTCHE
EEQ ERP
INCB
CMPA SRTCHS
EEQ END
ASL SRTCH3
GRA LOCP1
$E R R$
END GSR BEEP
TSTB
RTS
* MASTER GOUTINE FOR SCANNTNG KEYPAD 荈
SCMKEY BSR RELESE
RWSLCT LDAB COEFF
BOAA TOEOE
GSR LOTST
BGT INTP
LOAA BEOD
ESR LDTST
EGT INTP
LDAA COEOE
BSR LDTST
EGT INTP
LOAA TAEOT
ESR LDTST
GGT INYP
GRA RWSLCT
RTS
* clear lyqued crystal orsblay **
CLROES LOA TOEFF
STAA PTAAL
STAA PIABI
LOA $10 \equiv O F$

```
LDAA PJABZ
* SAVE PRGNTER CONTROLS
MAY 14 }7
ANDA TOEFC
STAA PIABR
RTS
```

```
** DESPLAYS A NO. ON LSD OF LCE NTTHOUT AFFECTENG OTHEP VALUES **
LCD1 GOAE PIAAL
    ANDE TOSFC
    ANOA \OEOF
    ABA
    STAA PTAAL
    ANOA PDSOF
    RTS
```


** KEYOAD	code	CONVERSICN	TABLE	\% ${ }^{\text {a }}$
CONV1	CON	050A	9	
	CON	0 ± 09	8	
	CON	0 ± 08	7	
	con	$0 \equiv 12$	6	
	CON	0 ± 11	5	
	CON	0 ± 10	4	
	CON	0 ± 14	3	
	CON	0519	2	
	Con	0-18	1	
	CON	0 ± 01	10	


```
RUN gSR ClFOES
    GSR SCNKEY * LOCK FOQ NO. ENTEREO ON KEYPAD
    BSR NEODE N
    CMPA l0EBB If A NUMBEK IS NOT FOUNO PETURN
    BEQ RNOUT DRSPLAY ON LEO
    GSR bCOA TRUNAAES DISFLAY ON LCO
```

```
ENLP INX
ENLP INX
    INX
    OECA ACC A IS COUNTER SELECTOR
    GPL RNLP
    USR 00.X CALL SELECTED RUN ROUTINE
    LOAB IG#F4 TURN OFF OPEN REGISTER TNOICAYCK
    STAB CPGAB?
    krs
```



```
CKTAB JMP RUNB E EQUIVALEAT KEY NO.
    JMP HRMSLT I
    JMP MEM 2
    JMP RUN 3
    IMP NCHNLSS 4
    JMP PER 5
    JMP CYC 6
    MmP CDUM 7
    MP AMP 8
    JMP PMS 9
COUM RTS
*& THTS IS THE MASTER CONTRCL LCOP FOR THE PROGQAM %%
MASTEK LDS ISTACKP SET STACK POLATEP TO PROGRAM STACK LOCAYION
CONKEY USR INZSYS
CKLOOP JSR SCNKEY
    JSR NCOOE
    CMPA ROEBB
    GNE CKLOOP
    SUBE {0=03
    JSE NCOOE
    CMFA &0=B8
    GEQ CKbOCP
    GIAB LOEFG N TURN ON CPEN REGISTER INDICATOR
    STAB CPIAAR 年
    LDA ICKTAB-3 COATROL KEY JUMP TAALE O
    ESR RNLP
    GRA CKL.OOP
RNOUT LOAB IODF&
\begin{tabular}{|c|c|c|}
\hline & INX DECA & \\
\hline & BPL JSR & \[
\begin{aligned}
& \text { RNLP } \\
& 00 . X
\end{aligned}
\] \\
\hline RNOUT & LOAB & \(10 \pm F 4\) \\
\hline & STAB & CPIAR？ \\
\hline & Ers & \\
\hline
\end{tabular}
```

 受
    ```
    受
CALG SELECTED RUN ROUTINE
```

```
CALG SELECTED RUN ROUTINE
```

```



    LOAA PTSCYC * CONVERT TO BCD

JSR BNECC2
STAA PTCY10 * RTS
```

SHFL4 ASLA
ASLA
ASLA
ASLA
RTS

```

```

DISCYC IDAE CYCAVG
JSR OESOG2
MTS

```

*
SETCNT CERE
    lona cycavg
    CMPA TOE15
    BHI ERROR1
    CMPA IOEOF
    BLE SKIP
    LOAB 1050A
    ANDA \(\quad 0=0 F\)
SREP \(\begin{array}{ll}\text { ABA } \\ & \text { SSR SETCNZ }\end{array}\)
    JSR CYCDEC CCCNVERT NG OF CYCLES TO OCD AND ETSPLAY
    RTS
EWROR1 LOAA TOEBS
    STAB PIABI
    RTS
\begin{tabular}{lll} 
SETCNE & LOX & BGEOOQ1 \\
& STX & NGYCLE \\
SLOOP & DECA & \\
& EMI & RTN \\
& ASL & NCYCLE \\
& ROL & NCYCLE \\
& BRA & SLCOP \\
RTN & RTS &
\end{tabular}

- W LOAD LCE WYYH \& EYTES POINTED AT EY GMDEK \&*
LCDOIS LOAA \(3 . X\)
    STAA PIAAL
    LDAA 02.X
    STAA PIABI
    LDAA D1.
    STAA PIAAE
    LOAA 00:X
    ANDA POEOS * SAVE PRTNTER CONTPOLS MOY 1478
    LOAB PYABE 品
    ANOB BOEFC
    A要A 量
    STAA PIAB?
    RTS
草䓪 MANAGES PAMAMETERS ACCESSED THROUGH MEH KEY *
MEM JSR CLRDIS
    JSR SCNKEY \%
    SSR NCODE W DECODE KEY
    ANDA \(\quad 0=0 \mathrm{O}\)
    CMPA \(\quad 10=00\)
    RNF M.IA

\begin{tabular}{|c|c|c|}
\hline & CON &  \\
\hline & CON & \(05 C F 0505,0504,0 \leq 08,0 \pm C 7,0507,05300574\) \\
\hline & CON &  \\
\hline cosbot & CON & \(057 F-0561\) \\
\hline & CON &  \\
\hline & CON & \(0 \pm 76-0 \leq 410 \pm 70,0 \leq E 2,0 \leq 6,0560,7552,0 \leq F 1\) \\
\hline & CON & \(0 \leq 54,0 \leq 82,451,0 \leq 33,0 \leq 47,0 \leq 1 C_{0} 0 \leq 3 C, 0 \leq 56\) \\
\hline & CON &  \\
\hline StMbot & CON & \(0 \pm 0 \mathrm{C} 0 \pm 9 \mathrm{C}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{28}{*}{SINCOS} & BOUTINE & FOR DOTNG & SINE AND COSIME TRANSFORMS \(\quad\) 呂 \\
\hline & LDX & －DATA & START OF STORAGE AFEA FOR STACKEL STGNALS \\
\hline & STY & DAPPT & PGTNTEP TG SIGNALS \\
\hline & LOX & －Stantc & START OF MEM SECTION TO SE CLEARED \\
\hline & LDAA & 10530 & MC OF EYIES TS ge cleared is 48 \\
\hline & JSP & CLRMEM & CLEAR STORAGE AREA FOR TRANS RESULTS \\
\hline & LDX & ISTARTC & ＊DEF STORAGE AREA FOR \\
\hline & STX & STCRAR & ＊COS TRaNS RESULTS \\
\hline & LDX & ¢ COST0p & \(\cdots\) \\
\hline & STX & TAELEP & ＊DEFINE TOP AND BOTTOM \\
\hline & LDX & c coseot & ＊OF TRMNS con table \\
\hline & STX & TAEEEB & ＊FOR COS TRANS \\
\hline & BSR & TRASFM & 00 cos trinds \\
\hline & LDX & －DATA & \\
\hline & STX & DATPT & \\
\hline & LDX & ISTAMTS & －CEF StORAGE AREA FOR \\
\hline & SIX & STCRAR & －SIN TPANS SESULTS \\
\hline & \(\operatorname{LDX}\) & －STNTOP & 4 \\
\hline & STX & TAELEP & \％SMME \\
\hline & Lox & CSNBOT & ＊For sta frans \\
\hline & Stx & PABGEB & \％Sth \\
\hline & BSR & TRASEM & OC SIN TK最NS \\
\hline & JSp & PHSCCP． & calculate phase cordectich \\
\hline & Cl最 & OEVTEN & SET DIVIDE SY If Flag TO 2ERO \\
\hline & JSR & TESTBE & TEST SUTTCH \\
\hline & give & RECT & TF ON SKIP EECT TO POLAR CON UERSICA \\
\hline & JSP & pOLAK & CORVEPT TO POLAR COOROLNATES \\
\hline & INC & DSVTEN & SEY DTVIDE BY TEN FLAG TO \\
\hline \multirow[t]{12}{*}{EECT} & LDX & ［PHSSTE & \％ \\
\hline & STX & gecout & ＊ \\
\hline & LDX & ［STARTS & \％ \\
\hline & STX & BNTN & 尔 \\
\hline & USR & CNVET & －G SNA Y 10 gCO FOR SENE \\
\hline & CLR & DTVTEN & Clear otvece by 10 FLAG \\
\hline & L0x & dampste & ＊IDENTEFY OUTPUTS ANO INPUTS \\
\hline & ste & BCCOUT & \％ \\
\hline & LOX & CSTAETC & \({ }^{*}\) \\
\hline & Stx & GNTN & \％ \\
\hline & JSR & CNVET & ＊B MARY TC BCD FOR COSINE \\
\hline & dSR & MPREM & \(\stackrel{5}{5}\) \\
\hline AOPR & RIS & & \\
\hline
\end{tabular}



```

*N STORES AGC A AND S TNTG POTNTER *-%
STOEE STAA TAELEP
STAB TACLEPS1
ETS

```

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 酔早号 SU3 & TINE & A00 T0 & TRANSERKM & STACK 苛 & 㐌号 & & & & \\
\hline ADTFSK & LOX & StFPT & LCAD & STORAGE & AQEA & POTMPER & & & \\
\hline & LDAA & U43 & & & & & & & \\
\hline & ADOA & \(30 \times\) & & & & & & & \\
\hline & STAA & \(30 x\) & & & & & & & \\
\hline & LDAA & U：2 & & & & & & & \\
\hline & ADCA & 2 B & & & & & & & \\
\hline & STAA & \(2 \cdot x\) & & & & & & & \\
\hline & LDAA & U \({ }^{1}\) & & & & & & & \\
\hline & ADCA & \(10 \times\) & & & & & & & \\
\hline & STAA & d，\(x\) & & & & & & & \\
\hline & LOAA & U & & & & & & & \\
\hline & ADCA & 0.0 & & & & & & & \\
\hline & STAA & \(88 \times\) & & & & & & & \\
\hline & \(J S R\) & TNX4 & SET & AORS OF & STIRAGE & E AREA & POENTER & 10 & NEX \({ }^{\text {P }}\) \\
\hline & STX & STRPT & & & & & & & \\
\hline & prs & & & & & & & & \\
\hline
\end{tabular}


```

% THES MAKES {OOM FOR STACKING 6\& VALUES * %
EXPSHF LOAB 10=05
SHFEP ASR U
FOR UbI
ROR UBZ
ROR U\&?
DECB
GNE SHFBP
RTS

ROUTINE CLEARS UNLIMITED SECITONS OF MEM ***

㗊 IMDEX MUST CONTAIN STARTING ADRS.
W% SRTCHL MUST BE NO OF BYTES TO GE CLEAREDE
CLRMZ STX DATPT
CLRMLP EDK DATPT
ClR 0%EX
INX
STX DAPPT
LDX SRTCHI
DEX
STX SRTCH\&
ENE CERMLP
RYS

```
W INOEX MUST CONTAIN STARTING ADRS ACC A MUST CONYAIN NO CF GYTES TO
* BE CLEARED.
CBRMEM CL爵 00 O
    INX
    DECA DEC GOUATER
    GNE CLFMEM LOOF
㗊 SELECTS MAXYMUM POTNTS PER CYCLE GOSSIBLE
PTSSET LOAA PSAA
    CMPA TODOA \%
    ECS PTSERP \(\quad\) EEATNG 2ERO FOUNO ERPOR
    LOA PEO B
    LDAB \(\quad\) CCO 曹
    6SR COMPAR 亭
    BMI PTS64 *
    ERA PTSERR PERIOD 100 LARGE
\(\begin{array}{lll}\text { PTSG4 } & \text { SOAA } 64 \\ \text { STAA PTSCYC * }\end{array}\)
    LOBA IE1 *
    LOAB CCC1 *
    ESR COMPAR 曹
    OMI PTS16 等
    QRA SETFE * 64 PTSMEVC
PRS15 LDAA 16
    STAA PTSCVC
    LDAA TE2
    LDAB CCC2 蚵
    ESR COMPAR

    LDAA 44
    STAA PTSCYC 呂
    LDAA TES *





```

早鲁 CONVERTS EINARY DATA TO BCD FOR DISPLAY PPAFY IL *\&
SCOPT1 CLRG LOX BNTM N

```

```

 STAA DL 是LSSYTE
 LDAA 01QX 草
 STAA D2 *
 LDAA 00,X *
 STAA DS GMS BYTE
 BPG POSIT TEST FOR NEG EIMARY VALUE
 COM D3 * NEGATE NEG BINARY VALUE
 COM D2 品
 COM D! = %
 LDAE 10=02
 STAB SETCH2
 JSR BINECC
 LDX BCDOLT
 LDAA OUTL * LSO
 STAA 03.X STORE DECIMAL RESULTS
 IOAA OUTE F
 STAA 02&XX b
 LOAA OUTS *
 STAA 0&gX *
 \angleOAA TOE&O SET 3FDDECTMAL (X XOX X X)
 LOMB OUT4 *
 ANDS T050F *
 STAS 00,X *MSD
 RTS
 *% CONUERTS ETNARY DAPA TO SCO FOR DESPLAY PPAPT 2\& 每
GCDPTZ ENE GLARG NO LEACING ZERO
loAB
lll
gNE EAED F NEXT DEGTY IS NOT A ZERO ERANCH
LDAS 01, 星 %
ANOE RO=OF S
GNE NOZEGO TEST FOF LEADING ZERO
ORAB IOEOF * BLANK EEAOING 2ERO
CRAB
BRA BSML SMALLEST NO.
NOLERO SRA BSML
LSRA SHIFT DECIMAL
SHIFT DEGTMAL
*
* ADD DECTMAL POENT
*
STAA D||X LOAO SIGN

| SHR4 4 | LOAB | 20504 |
| :---: | :---: | :---: |
| SHRLP | LSE | 00.8 |
| | ROR | 018 |
| | ROR | 12．x |
| | POR | 03.8 |
| | DECB | |
| | QNE | SHKLF |
| | RTS | |

 *
 SET NEG员MVE SIGN
 SAVE FOR LATER
 BINARY TO ECD ROUTINE
 *
 *
 ** CONUERTS EINARY DAIA TO SCO
BMED ESR SHR\&\&
LSRA
8SML
ORAA ESUX
STAA OSBX
LDAA SRTCHZ
RYS

```
* GALCULATES PHASE CORRECTION IN TENTHOUSANDTHS OF OEGREES **
```

髙草 DUE TO TTME SAMPLING SREW
PHSCOR LDAB 10=40
LDAA PTSCVC
PHLF LSRB
LSRA
CMPA - =01
ENE PHLP
LDAA HRMNIC F
STAA YB1 %
CLR Y *OAO MARMONTC NO. INTO MULTIPLY POSITION
STAG XX*1
CLR XX
JS免 MULT16
b0X U\&Z
STX Y
LDX CO=249F * LOAD CONSTANT FOP MULTIPLY PO.9375 DEGREESI
STX XX *
USR MULT16
L0X US2
STX PHSZ
LDAA U*1
STAA PHSI
LDX IPHSI CONVEPT GIMARY PHASE TO BCD
STX GNIN %
LOX PPHS10 *
STX SCCOUT
USR BCCCCN *
JSP MVDEC MOVE DEGMAL IALOB RESULTS ARE IN DEGREES
RTS
MVDEG LDAA
ASLA
LDAB 010X
ANOB TO=0F
ABA
STAA OSOX
RELOAD DECEMAG PT
RTS
DISPHC LDX IPHS10 DESPLAY PHASE CORPECTION
JSR LCDOIS
RTS
*索 HARYONIC STZE CHECK 采委
HRMCK LDAB HPMNIC
LOAA PTSCYC
LSRA
CBA
BCC HPMOK1
LDAB \&0EB2
JSR ERGOR
MRMOK1 RTS

```
```


DTSPLAYS ERROR SYMBOL \&ACCEI AND HALTS PROGRAM *易

ERGOR JSR CLROSS
STAB PIABA
ESEGF BRA ESELF
RTS

```

```

MRMSLT LOAB HAFM10
JSR OLSDG2
JSR EMTOS2
STAA HARM10
TAB
JSQ OLEDG2
JSR BCORN2
STAB HRMNTC
JSR HRMCK
JSR PHSCOR CALCULATE PHASE CORRECTION
RTS

```

DSSDG2 JSR CHEIS
    STAB PEABL
    LOAA P0E2F
    STAA PEAAZ
    kTS
```

\#\& CONUERTS Q DEGTT BCD VALUE TN ACCE PO \& SIT GINARY VALUE IN E \&%
BCOBNZ TBA
ANDE TOEOF
LSRA
LSR自
ISRA
LSRA
EEQ ECRRTS
AODB TOEOA
OECA
gNE BCELF
BCORTS PTS

```
要 ENTERS AND DISPLAYS TWO CYGI 1S *
EMTOSZ JSR SCNKEY
    EEQ LASTDG
STROUR JSR NCCDE
    LDX TPIAB1
    LDAB PQEFF
    STAB \(0 \cdot x\)
    JSR STOLG1
    GEQ GASTEG
    JSR NCCDE
    GOX IPIAEA
    JSR STCTG?
    AFO LASTEF
```

 ERA STROVR
 LASTOG
OAA PTABI
RTS

```
F ROUTINE SETS THE PRE AND FOSY COUNTEPS OM TIMENG BOARO
PTSCON LOAB T0500 64 PIS CONTROL BITS
    \(\angle O A A \quad 10=10 \quad 16\) PISTCYC
    CAPA PTSCYC
    ecs FCSET (64)
    LOAR \(\quad 0=04\) IE PTS CONTROL BITS
    CMPA PTSCYC
    EEQ PCSET \(\quad\) O16
    \(\angle O A B\) T0EOS \(\angle P T S\) CONTROL BITS
PCSE LDAA P罢AG\& SAVE OTHER BITS
    ONOA TOEFS \(\quad\) AND ADD PISACYC
    ABA CONTPOL BITS
    STAA PTABL \(\quad\) (CONTHOL BITS ARE B2.83
    BTS
* DISPLAYS AND ALLOWS ENTERING OF RORACC 男
黄菓 CONTROLS ARCTAN ACCURACY TABLE FOLLOWS \({ }^{*}\)
* ROTACC = 3 RESULTS IN 0 O: DEG ACCURACY TIME 1 SEC CHAN. *
* ROTACC = P PESULTS TN 00175 DEG ACCURACY TIME 16 SECICHAN *
GOTAC LOK IRCTACC
    ESR DISR
    -DAE ROTACC
    CMPS 10E0:
    EHT CROTI
    COAS \(10=03\)
CROT CMPB COEO7
    ELS CPOT2
    LDAB I 0507
CROTR STAB ROTACC
    JSR EISUGZ
    RTS
```

* DESPLAYS AND ALLOWS ENTERING GF CMANNEL NO. %
NCHNLS LDK INCHPR F LOAD ADRS OF MOR OF CH OPERATED CN AND GPINPED
QSR DISR
LDAB NCHPR
DECB TEST FON CH VOR CUTSIDE RANGE CF 1 TO 6
CMPB [05 %
EHI NCHLDG %
RIS OK WITHIN RANGE
NCHLDG LDAS SOG OUTSTDE PPNGE LOAD IN 6
STAE NCHPG
RTS

OISPLAYS AND ALLOWS ENTERJNG OF STATION NO. F

STATNO bOX DNSTN S LOAD ADRS OF STATION NO.
BSR DTS2 DISPLAY AMCENTERVALUES
gIS
OSSPLAV AND ALLOWS ENTEBTNG OF RUN NO.
早
\&UNNO GDX INRUS

```

ESR OIS?
RTS
** GENEPAL ROUTINE FOR DISPLATING AND EATERING 2 DIGIT NO. **
LCAD VALUE TO BE oISplayED
LDAB 00. K
JSR DISOG? DISPLAY 2 DIGITS
JSR EATOSR ENPER 2 OGGLTS
bOX TAELEG :
staa \(00 . x\) store nem value
TAB

JSR DESDG2
RIS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline W\% TUFN & PREINTER & POWER ON & & & & & \\
\hline PWRON & LOAA & PIAB2 & & TURN & Prinfer & POWER & ON \\
\hline & OPA A & -0 050 & & & & & \\
\hline & stam & PIAB2 & * & & & & \\
\hline & Lox & ¢0こ3A02 & & \% DEL & AY 200 & & \\
\hline & JSR & DELAY \({ }^{\text {d }}\) & & * - AT & 1000 KHz & clock & \\
\hline & grs & & & & & & \\
\hline
\end{tabular}
* CONTROLS PARAMETER POINT SEQUENCE **
MPRINT BSR PWRON TUFN PRINTER POWEE ON
    BSP BLANK DETDTS
    BSR DFTDIS PFINTCOS AND SIN
    LDAB HABM10 \(\%\)
    JSR DESOGZ * PRINT HAFMONIC AO.
    ESR PRNT *
    JSR DISPER "PRINT PERIDO
    ESR PRNT
    JSR DESCYC * PRINT NO CYCLES
    BSR PRNT
    JSR DSTMRN FRRMT STAFIOV AND FUN NO.
    ESR PRNT *
    BSR BLANK
BSR PWKOFF TURN PRINER POWEF OFF
    RYS



```

 BSR PRNT F PRINT A ELANK
 RIS
    ```
\% R ROUTINE PRINTS VALUES PODNTEC AT EY TNDEK REG。 *
TPRINT JSR LCEDIS
    ISR PRNT
    RTS
幾 ROUTIME PRINTS COS ANO SIN TRANSFOKM RESILYS \#
DFTOIS LOAA NCHPS
    CMPA IO \(\quad\) SELECT NO OF CHE TO SE PRINTEO
    CEO CHANA
    CMPA 102 *
    \(\begin{array}{lll}\text { EEQ } & \text { CHAN2 } & \text { - } \\ \text { CMPA } & \text { CO3 } & \end{array}\)
    EEQ CHANB
    CMPA CO4
    gEQ CHAN\& *
    CMPA \(\quad 05\) *
    EEQ CHAN5
CHANG LDX PPHSSTR*20
    ESR TPRTNT
    LOX CAMPSTREZ
    ESR TPRIAT
CHAN5 LDX TPHSSTR+16
    ESR TPRENT
    LDK TAMPSTRA㬛 6
    BSR TPRINT
    LOR PPHSSTRG12
    ESR TPEENT
    GOX LAMPSTRBE2
    ESR PP旨INT
    LDX EPHSSTR寊
    GSR TPRINT
    LOX AAMPSTRAB
    GSR TPRIAT
    GOX PPHSSTRB4
    ESR TPETMT
    LDX TAMPSTREG
    ESR TPRENT
CHAN1 LDX RPHSSTP
    ESR TPRIMY
    LDX TAMPSTR
    ase TPETNT
    RTS
\% ROUFTNE TRANSFORMS AND PKINTS ALB HRKMONSCS \%
- BEGINNING AT HARMCNIC NG HRMNIC 品
PRTALL ESp TRSET
    gea poUT I IF ZERO RETURN
    ESR HMSET
    RRA PRTALL

* GEGINNING AT HARMONTC NO HRPNTC
管学
prievo esp trset
    DECA
    QLE POUTE IF - OK U RETURN
    GSR HMSET
g\&A PRTEVO
\begin{tabular}{lll} 
PGSET & JSR & HKMCK \\
& JSR & SIMCOS \\
& LDAA & HRMNIC \\
& DECA & \\
& RTS & \\
& & \\
HMSET & STAA & HEMNSC \\
& JSR & BNBCO2 \\
& STAA & HARMIO \\
& ROUTS &
\end{tabular}
W CONVEETS 1 BYTE ESNAFY TO 2 DECIMAL MMAX VAEUE IS 991
BNBCDE CLRB
ADD10 ADOB \(\quad 0=10\)
    SUBA \(0=0 A\)
    ECC ADOLO
    SURE TQ \(=10\)
    ADOA \(\quad C 0=0 A\)
    ABA
    RTS


ROR Un3
DEX
QNE MLP2
RTS


PIS
```

** COMPONENT DF BCO CONVERSION FOUTTNE **
BINSUE INC SUET
ESR SUES
ROS

```

```

GTNADD GSR ADDS
lOAA SUBT
DECA
gTS

```
* CORPONENY OF BCD CCNYERSICN ROUTINE *
QTNSET ESR ADDB
    GOAA SUBT
    DEGA
    ASLA
    ASL
    ASLA
    ASLA
    RTS
* CONS TANT TABLE FCR BINARY TO BCD CONVERSION * \%

\(\mathrm{C105} \mathrm{CON} \quad 0=01,0 \equiv 86,0 \equiv A 0 \quad 100000\)
\(\mathrm{C} 104 \mathrm{CON} \quad 0 \equiv \mathrm{CO}, 0 \equiv 27,0 \equiv 10 \quad 10000\)
CIO3 CON \(0=00,0=03,0=E 8 \quad 1000\)

䉓 3 BYTE AOO FOR BCO CONIERSTCN ROUTITE 昜
ADOB LDAA DE
    ADOA CL
    STAA 01
    LOAA DE
    ADCA CZ
    STAA D2
    LDAA DE
    ADCA CB
    STAA 03
    RTS
管 3 BYTE SUBTRACT FOG SCD CONUETSION ROUTTAE **
SUG3 DOAA OL
    SUBA CD
    STAA D1
    LDAA 02
    SBCA C2
    STAA D2
    LOAA DS
    SBCA C3
    STAA DB
    pIS

```

* ACQUIEES TRANSFOEMS AND BRINTS EVERY OTMER HARMONTC \&
* CALLEO BY KEYS RUN \&
ATPEVD ESR TESTE\& F IF OATA PROTECT IS ON RTA
BNE KYOUT4 *
ESR ACQX BCQUTRE DATA SET
USR PRTEVO TRANSFORM AND PRINT RESULYS
GSR HRSET F RESET HARMONIC NO ANO TEST
ENE ATPEVO * REPEET SNTTCH | 3 l
KYOUT4 RIS

```
- ACQUSKE TRANSFORM ANE PRSNT A\&L HAGMCNTGS \%
* CALEED GY KEYS EUN 7 *
ATPALL ESR TESTB4 F IF DATA PROTECT IS ON RTN
    GNE KYOUTT *
    ESR ACOX ACQUIRES A DATA SET
    JSR PRTAIL TRANSFORM AND PRINTRESULTS
    GSR HRSET F RESET HARMONIC NO ANO TEST
    ENE AEPALL G REPEAT SWITCH \& 31
kYouTt RTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{Acax} & LDAA & HRPNIC & & SAVE HA & A晚 & M9 & NIC & NO． \\
\hline & STAA & hSAVE & \％ & & & & & \\
\hline & ESR & AcQoat & & ACQUTPE & ， & & OATA & SET \\
\hline & \multicolumn{8}{|l|}{RTS} \\
\hline \multirow[t]{3}{*}{HeSET} & \multirow[t]{3}{*}{LOAA
JSR
ESR} & \multirow[t]{3}{*}{\begin{tabular}{l}
HSAVE \\
HMSET \\
TESTES
\end{tabular}} & \multirow[t]{3}{*}{} & \multicolumn{4}{|l|}{RESET HARMONIC} & NO． \\
\hline & & & & & & & & \\
\hline & & & & TEST REP & PE & & 5 Sht & TCH \\
\hline
\end{tabular}
* TEST SWITCH 1 高
TESTEI LDAA PIABS REAO MODE SWITCH
    ANOA TOEIO MASK OUT ALL BJT SMITCH NO.
菅 TEST SNITCH 4 费
\(\begin{array}{llll}\text { TESTBA LOAA PEABS RED MODE SWITCH } \\ & \text { ANDA } & \text { COEBO MASK OUT ALG BUT SUITCH NO. } 4\end{array}\)
愛 TEST SUITCH 3 昜
TESTBS GOAA PIAB3 READ MODE SWITCH
    ANDA \(\quad 0=40\) MASK OUT ALL BUT SWIYCH NO. 3
掌 CIRGUGATE ACC \& BITS INTC ACC A *
ROKBA RORG
    RORA
    RORB
    FORA

POR星
RORA
ROE日
GORA
RTS

```

** NASTER ROUIINE FOR 6\& OR 16 FTS/ CPCLE % % %

```

DTAG64 LDX 4536 * NO BYTESTO BE CLEARED
\(\begin{array}{lll}\text { STX } & \text { SRTGH1 } \\ L D X & \text { PDATA } & \text { \& LOCATION SF OATA PO BE CLEAREC }\end{array}\)
    JSR CGMM2 CLEAKMEMORY SECTIOM
    GOX NCYCLE * SET NO. CF CYCEES TO BE AVERAGEC
    \(\begin{array}{lll}S T A & \text { SRTCH1 } \\ \text { BSR } & \text { AOL664 }\end{array}\) ACQUTRE DATA

0764 STX SRTCHE THO OF 4 EYIE WOGOS YO BE NORMALSIED
    LOX LDATA TDEFINE LOCATION OF DATA
    STX DATPY 昜
    JSR ADJUST NORMALIEE
    QTS


* ROUTIME ACQUISITION AND STACK - STACKS ONE 12 GIT WORD FRCM ADC IATC * *

क F FOUR 8 ELT EYTES. REOULRES 1 AL MACHIAE CYCLES TO CALL AND RETURN. ACQSTK LDAA CPIAES \(\angle\) WAIT FOR SAMPLE PULSE FOR CH 1 CDCWM GCIMEI
\(\begin{array}{lll}\text { EPL } & \text { ACOSTK } & \text { \& } \\ \text { LDAA } & \text { PTAAS } & \text { \& READ LS BYTE FROM ADC }\end{array}\)
LoAa PIAAS \& READLS BYtE FRDM ADC
ANDA \(\quad 0=F 0 \quad 2\) MASK OUY CH \(\triangle D P S\)
ADDA \(03 . X\) STACK IN MEM
STAA 03X 6
LDAA PIABS 4 READMS BYTE FROMADC
ADCA 02.5 STACK IN MEM
STAA 02,X 6
LOAA 01AX 5 ADO CARRY TO BRO BYTE
\(\operatorname{ADCA} \quad \therefore 05 \quad 2\)
STAA 01.X 6
ECC ACSKI \(\triangle\) BRANCH IF CAPRY CLEAP
INC \(00 . X \quad 7\) OTHERWISE TNC MS SYTE
ACSK1 INX 1
INX \(\&\) G POINT INDEX TO NEXT STACKING LOCATTOA
INX \(4_{4}^{*}\)
INX 4 a
RTS

荤 MASTER ROUYINE FOR 4 PRTATS PER CYCLE
OATAQA JSR NOCALL SEF NO OF GALES TO ACQUSI
LDX I 384 NO OF BYYES TO BE CLEARED
STX SRTCHE
LOX IDATA STARTING ADRS
JSR CLKMR CLEAR STACKIAG AREA
DATLP JSR ACOUSI ACQUTPEES CVCLES OF DATA

BSR STACK NCW STACK DATA
LOX NTACG EEC COUNPE？
CEX
STX
NTACO＊
ENE
\(\angle 0 X \quad 10096\) \＄
STX SRTCH1 \(\quad\) NO．OF \＆BYPE WOPOS TO BE NOFPALTZEO
60X
STX DATPT D DEFTME LOCATLON OF DATA
JSR ADJUST ACJUST DATA FOR NO OF PTS STACKEC
TIS

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{6}{*}{呂 ROU ADJust} & NOR & Lzes 0 & WITH NO．OF CYCLES STACKED＊ \\
\hline & LOAB & cycavg & EXP OF 2 8C0 \\
\hline & J5R & gCcenz & CONVEFT TC STMARY \\
\hline & LDAA & ［16 & ＊ \\
\hline & SSA & & ＊SEY NG．gF Shift need to norpal ile \\
\hline & STAA & NOSHF & ＋ \\
\hline \multirow[t]{2}{*}{ADSLPL} & LDAB & NOSHF & RESET NO，CF SHIFT COUNTEP \\
\hline & LDX & DATPT & LCAD POINEER T3 DATA \\
\hline \multirow[t]{13}{*}{ADJLPE} & JSR & SHIFPL & SHIFT \＆BYTES 1 BIT LEFT \\
\hline & DECB & & DEC NOSHF COUNTER \\
\hline & ENE & ADJIP？ & \\
\hline & LDAA & 0tex & －Remove cc offsft to ceeate \\
\hline & AODA & 10580 & ＊ 25 COMPLIMENT NUMEERS \\
\hline & STAA & \(00 \cdot x\) & \(\%\) \\
\hline & JSR & Thxts & SELECT NEXT WALUE TO BE SHIFMEO \\
\hline & STX & 0月TP1 & \％ \\
\hline & LOX & SRTCHI & ＊OEC WORE COUNTEP \\
\hline & DEX & & 综 \\
\hline & STX & SR1CH1 & 骂 \\
\hline & QNE & ADJ \({ }^{\text {a }}\) & \\
\hline & RUS & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{9}{*}{NOCALL} & LDAB & cycavg & CYCAVG IS EXP OF 2 IN 8 C0 \\
\hline & JSR & OCCBN2 & CONVERT TO BINARY \\
\hline & SUBE & 103 & SLE OUT 3 FOR WI NO OF CVCLES \\
\hline & EPL & NOCA1 & SF RESULT IS PSSITIVE CHANGE NOTHTAG \\
\hline & LOAB & 103 & －OTHERNISE RESETTO 3 \\
\hline & STAB & cycave & \％ \\
\hline & TBA & & \\
\hline & JSR & SETCN2 & RESET CYCLE COUNTEP TO 2 EXP 3 \\
\hline & ClRB & & －FOR N＝3 \\
\hline \multirow[t]{2}{*}{NOCA1} & LDX & 10001 & 4 \\
\hline & STX & NTACO & \％SETS COUNTES FOR NO．OF TEMES \\
\hline \multirow[t]{5}{*}{NOLOOP} & DECO & & －Acqusa is calleo \\
\hline & EMI & RETRA & ＊ \\
\hline & ASL & NTACOH & 易 \\
\hline & POL & NTACO & \({ }^{*}\) \\
\hline & 圂號 & NOLOOP & \(\stackrel{4}{ }\) \\
\hline RETRN & RTS & & \\
\hline
\end{tabular}

COAVERT TO BINARY
SLE OUP 3 FOR WN NO OF CYCLES
IF RESULT IS PDSITIVE CHANGE NOTHTAG
－OTHERNISE RESET TO 3
STAB CVCAVG＊
JSR SETCM2 RESET CYCLE COUNTES TO 2 EMP S
FOR N＝3
S SETS COUNTER FOR NO OF TIMES
－AcQusa is called
EMI RETRA T
ASL NTACOH1
BRA NOLOOP
RETRN RTS


LDAA PTABS
MC PIAA5
－READ CH 5
－SELECT CM 1
PSHA
DECB
BNE AQLPA LDS SKTCHI
RTS
＊STORE DATA CH 5
＊
＊ 100 O
RESTORE STACK POINTER
```

** ROUTINE OISPLRYS VOLTAGE ON SEEECTEO CHANNEL IN MILLIVOLTS 每

```
क R RANGE F/O 5000 MV
VOLTMT JSR CLFDSS \(\quad\) JSR RELESE WATT FOFRELEASE OF KEY
KEVFMD JSR RWSLCT SSCNKEY AFTER RELESES
    EEQ VLTOUT ETS IF RTA IS FOUAO
    JSR NCODE *
    ANDA TOEOF 专
    DECA 合
    STAA PEAAS 易 SELECT CMANNEL
    LDAA PEABS CLEAR SAMPLEPULSE SY READING ETAES
    JSR RELESE WAIT FOR RELEASE OF KEY
    JSR KEYQ LCCK FOP ANY PQESSED KEY
    ENE KEYFND IF FDUND DECODE KEV
    LDAA CPGAES *MATT FOR SAMPIE PLLSE
    GPL VIPI *
    LDAA PEABS MS B BITS
    LOAB PJAAS LS \& EITS
        ANOB COEFO MASK CH GORS
        ADOA 10 EGO REMCVE OFFSET UTVEKT SIGN ETTI
        STAA \(Y\) 菏
        STAB \(\forall 41\) \#
        ESR MUOES CONVERT TO MELIIVOLTS THEN DISPLAY
VETOUT ERA RTS
- CONVERTS Y TO MTLLEVOLTS THEN DISPLAVS RESULT ON LCO *

    STX \(x X\) F FOK HV RESULT
    JSR MULTSG
    LOX IU
    ISR SHEFTL TMMES 2.
    STX BNRN

    STX 8ccout
    JSR BCECOZ CONVET TO BCD
    JSR GCODIS DTSPLAY
    RTS
* SCANS PREUTOUSLY ACQULRED OATA FOR AESOLITE MAX VALUE ON SELECTED CHAN W
MAXSGN JSR CLROTS
\(\begin{array}{lll}\text { MAXLP SSR SCNKEY SCAN KEY PAD FOR PSESSED KEY } \\ & \text { EEQ MOUT } & \end{array}\)
    JSP. NCOOE क
    ANDA SOEOF S DETERMIAE CHMMNEL NO.
    STAA CMCNT STCRE CHNO.
    ESR FNDMAX FIMD MAXIMUM VALUE
    ESR MVDES COAVERY TO MTHIVOLS ANO OISPLAY
    ERA MAXLP LCOP FOR NEXT KEY
MXOUT JSR CCROIS

RTS

\begin{tabular}{cc} 
INX 4 & INX \\
& INX \\
INX \\
INX \\
RIS
\end{tabular}

INGREMENT INDEX REGISTER 24 TIMES *
इसर24 LDAB 124

INXLP INX
DECB
ENE TNXLP
RTS
```

* DUMPS 6 CHANNELS OF DATA TO CHAFT PAPER WN
** values are sent to the dac at a rate of 30 values pef secomc **
* DATA RATE IS SET BY VARIAGLE SRYCHY AND MOUTINE DELAY\& **
gharto LDK roEv01A * 4,22 DECTM|L
STK SRICH1 * FOR DEGAY OF 33.000 mACHIME CYCLES
JSR ZEROL STARY WITH ZERO VOLT LEVEL
esr sadana
grs

```





\begin{tabular}{ccc} 
MEGATE & COM & \(00 . x\) \\
& COM & \(01 . x\) \\
& COM & \(02 . x\) \\
& COM & \(030 x\)
\end{tabular}
* LOADS VALUE POINTED TO BY TNDEX INTO U THEN SHSFTS U ROTACC EITS **
与 10 RTGHT. THE NO OF SHEFTS CONTROLS THE ROTATION STEP SIZE *

* ROUTINE SETROT - MOUES VECTOR TO FIFST DUADRANT USES COREIC ROTAYTONS *
葛草 TO ROTATE THAT VECTOR TO 0 DEGREES CAGCULATES NO OF DEGREES ROTATEE
* CORRECTS FOK. ACTUAL QUADRANT COREECTS FDE PHASE SHTFT DO TC DATA
* SAMPLING TIME SKEH FTNAL PHASE ON GHANNELS 2 TO 6 IS RELAT VVE TO CH 1 早号
* PHASE, FINAL PHASE ON CH 1 IS ACTUAL PHASE GALCULATES AMPLITUDES BA *
* MILI IVOLTS PER RCOT HZ.
SETROT LOX COEFFFF ?
    STX SRTCH S SETNO OF ROTATIONS COUNTER TO - 1

* MIKED IN WITH QUAD MOVE IS A TEST TO SEE IF GOTH PEAL AND IMAG PARTS **

TQUAD CLRE \(\quad\) LDX IMAG
    TST 00.
    EPL PIMAG
    日SR NEGATE NEGATE IMGGINAQY PART
ADOB 102 0010 ज NEC IMAG PAKY
PIMAG CLPA CLEAR ZERO FLAS


* NEXT SECTION POTATES VECIOR ITN FGEST QUAD. I CLOCKHTSE UNTIL TMAG *
贵 BECOMES NEGATIVE NO. CF ROTATION STEOS IS TN SRTCHI
\(\begin{array}{llll}\text { FOTATE } & \text { EDX } & \text { SRTCH1 } & 4 * \\ & \text { SNX } & * & 4 \\ & \text { STX } & \text { SRTCH } & 5 * \text { INC ROTATION COUNTER }\end{array}\)


* ROUTTNE MAKES COMPUYER JUMP TO NEXT \(4 K\) MEAORY SECTION: LE BEGTN日GE 1000 草
 W AUXILLAEY SET OF CONTROL OR TEST PROGRAMS
RUNE JSR SCNKEY

JSR NCODE
TSTA
ENE RGOUT
JMP BEGTNPOE1006
RBOUT RTS

STop
END
 555555555.555555555 . 555555555 . 555555555 . 555555555 . 555555555 . 555555555 , 555555555 .
 123 3 4 45 5 7

EMREC00


B I 80 R 0 WRTTEUPS SURSET EKYNEHS WAS GAST CHANGEC SEP 28 HANDEOOK SUBSET CHANGES WAS GAST CHANGEC SEPT 13

06 I
18L NEMS EETVER
THE COMPUTER CENTEFS MONTHLY NEWSLETYEG INOT BKYNEWSI TS FREE TO GET ON THE MATLING LISTS GALC X5529. LIBRAPY SUESET DATE

SEPT 29 BSS MAROHARE FADHURE
THE FOLLONENG FSS SUESETS WERE DESTROYED DUE TO MARDHARE FATLUFE LTBRMRY SUESET HTGHRNPF FCOEFF STFCF

SEPT 2 鸟 ACCOUNTTEG CHRGES EO CHMNGE
THE CHANGES IN ACCOUNTING GMARCES DETATLEO IN ERYMEHS WILL GC PNTD EFGECT OCTOBER 1 : 1976.

SEP 24 UNUSED TAPES ON TME MOVE
TAPES NOT ACCESSED FOR ONER 14 MONTHS WTLG MOVE INTO INACTIVE STORAEE OCT. 10 , SEND SIGNED TLIST INDICATING THOSE TAPES THAT YOU WANT INACTIVE TO TAPE LIBRAFTAN CTHERWISE THEY WILL BE FORCEMCVED AND WILL DECREMENT YOUR GROUP TAPE ALLOCATION SY A LIKE NUMBER.

SEPT \% H NEW WBETEUP GVATBAESE TMITM APOLOGIES
ANAOUNGENG THE BTRTH OF A NEW WRITEUP CALLED WETWORK WHICH CESCRIEES THE USE OF THE COAPERCIAL NETHORK TYMNE AND TME RRPNAET AT RKY
TO GET A COPY .
LIBCOPV MRTTEUPS OUTPUT WETHORR.


ON SEPT 13 THE INTERACTIVE TIMEOUT WILG BE REDUCED FROM 30 MTNETES TE 10 MINUTES THE REASON FOR THIS CHANGE IS TO TEY AND REDUCE CLCGGED LOGON QUEUES ON THE E AND C MACHINES WE HOPE THIS CHANGE WILD IMPROVE SERVICE ONCE AGAIN WE ASK VOLR COOPERATION FEEASE RELEASE RESOURCES WHEN YOU ARE NOT ACTIVELY IMTERAGTYNG NITH TME COMPUTEP.

TO CALl A CONSULTANT
```

415-843-104C OTRECT DSGL

```
                        \(451-5981\) FTS ONIV

APPENDIX B

BOARD LAYOUTS FOR MICROCOMPUTER SIGNAL PROCESSOR

Figure 9. Digital to analog converter.


Figure 10. Interface board layout.



XBL 7810-11977
\begin{tabular}{|c|c|}
\hline UNIVERSITY OF CALIFORNIA & BERMELEY \\
\hline GARY L CPPLIGER & alugut 76 \\
\hline \begin{tabular}{l}
TITLE: PRDGRAMMAQLE \\
STSTEM: CTLLE MO8OO mICROCOMPUTER SIGNAL
\end{tabular} & Ple and processor \\
\hline DWE*EG-124 & SHT 212 \\
\hline
\end{tabular}

Figure 14. Data acquisition board layout.


Figure 16. 5 K EPROM section on memory board.

- 子nokel preoq kiourw \(L\) ll aing!d

Figure 18. CPU board.

UNVERSITY DF CALIFORNIA BERKELEY GARY L OPPLIGER UUN
origmal citcuit br J. he
SrsTEm: CR BOR
MYTEM: MGEOODMPUTER SGNAL FROCESSOR
WG EEG-122 \(\qquad\)
XBL 7810-11984


Page

Figure 1. Location map, northwestern Nevada, showing prominent thermal springs within and outside of the Battle Mountain high heat flow area (after Sass et al, 1971). (XBL 735-676)

Figure 2. Electromagnetic transmitter and receiver locations. 114 (XBL 784-8035)

Figure 3. Generalized slice of solution space.
(XBL 7810-6556)
Figure 4. Amplitude spectra, T3-R1. (XBL 7810-6562)
Figure 5. Phase spectra, T3-R1. (XBL 7810-6560) 126
Figure 6. Amplitude spectra, T3-R2. (XBL 7810-6561) 127
Figure 7. Phase spectra, T3-R2. (XBL 7810-6559) 128
Figure 8. Amplitude spectra, T3-R2, two-layer fit. 129 (XBL 7810-6563)

Figure 9. Phase spectra, T3-R2, two-layer fit. 130 (XBL 7810-6564)

Figure 10. Amplitude spectra, T3-R4. (XBL 7810-6558)
Figure 11. Phase spectra, T3-R4. (XBL 7810-6567) 132
Figure 12. Amplitude spectra, T3-R4, two-layer fit. 133 (XBL 7810-6557)

Figure 13. Phase spectra, T3-R4, two-layer fit. 134 (XBL 7810-6555)

Figure 14. Amplitude spectra, T3-R5. (XBL 7810-6554) 135
Figure 15. Phase spectra, T3-R5. (XBL 7810-6553) 136
Figure 16. Resistivity sections along Line E-E' obtained 137 from interpretations of 1 km and 2 km sounding data (after Jain, 1978). (XBL 784-8029)

This section describes a field test of the EM-60, the data analysis and interpretation procedures, and a comparison between the survey results and the results obtained using other electrical techniques. The Leach Hot Springs area in Grass Valley, Pershing County, Nevada, was chosen for the first field site at which the entire system would be tested following local testing in Berkeley. The site, approximately 22 miles south of Winnemucca, lies within the regionally high heat flow area of northern Nevada (Figure 1) and has been surveyed in detail by means of various geophysical techniques (Beyer et al, 1976), including a low power prototype of the EM-60 (Jain, 1978).

Survey Plan

The initial field test was conducted along established geophysical line E-E' (Figure 2) at stations previously occupied by Jain (1978). For direct comparisons of raw data and results with those of Jain, we followed his field procedures. The EM transmitter was placed at 3 West and the receiver was moved between sites 4 West. 5 West and 1 West. The unit separation between stations is 1 km .

Despite the dust and high temperatures during the work in July 1978, the survey proceeded quickly. The survey area is nearly flat (elevations of all stations are within 3 m of each other) and the access is good. The principal instrumental problem encountered was the overheating of the electronics box for the Develco magnetometer caused by the high ambient temperature. This was easily solved by keeping it in an ice-filled tray.

Instrumentation and Procedures

The transmitter loop consisted of a 4 -turn, 50 m radius horizontal loop of \#6 AWG copper welding cable. Current was supplied in a square wave of positive and negative polarity at any desired period between \(10^{-3}-10^{3} \mathrm{sec}\) by a 60 kW generator (see Section 11 on the transmitter). Peak-to-peak current carried by the coil ranged from \(\sim 126\) amp at 0.1 Hz to 215 amp at \(10^{3} \mathrm{~Hz}\).


\title{
Hot Springs in Northwestern Nevada
}
(XBL 735 678)

Figure 1. Location map, northwestern Nevada, showing prominent thermal springs within and outside of the Battle Mountain high heat flow area (after Sass et al, 1971).


XBL 784-8035

Figure 2. Electromagnetic transmitter and receiver locations.

The receiver system, described in detail in Section 11 , utilized a 3-axis Josephson-effect superconducting magnetometer as a sensor. A Develco model 8230 with sensitivity \(10^{-5} \mathrm{y} / \mathrm{Hz}\) was used. Each signal from the sensor was band-passed by means of a four-pole Butterworth filter and amplified. The pass band for a particular transmitter period is chosen according to the following considerations:
(1) The low-frequency cut-off is set just below the fundamental frequency to remove the geomagnetic and sferic noise. Natural geomagnetic noise is particularly bad at 20-30 sec period.
(2) The high frequency cut-off provides anti-alias control and it should be set below the Nyquist frequency. However, as it is desirable to reduce high-frequency natural noise, we set the high-cut frequency just above the highest odd harmonic we wished to extract from the signal. Although the system is designed for periods up to 1000 seconds, we learned that it is extremely difficult to obtain reliable results at periods 50 seconds and larger. This limitation is primarily due to lightning and sferic noise swamping the signal during the long times needed to average periods longer than 50 seconds. In Nevada it was almost impossible to find a 50 second or longer period without a lightning strike that would either throw the SQUID detectors out of lock or generate signals that exceeded the receiver's dynamic range. A further fundamental problem is that the natural noise spectrum rises roughly as \(1 / f\) below 0.1 Hz and so the averaging time to achieve a desired signal-to-noise ratio rapidly becomes impractical as the frequency decreases.

Experimentation was conducted to determine the number of harmonics that could be obtained accurately from a given period. Field tests show that the seventh harmonic can be obtained with no substantial errors for frequencies below 100 Hz . This allows us to obtain an entire decade of frequency measurements from a single transmitter period. However, above 100 Hz only, the fundamental frequency is transformed because the sampling rate is reduced to only four points-per-cycle. This does not significantly slow down the rate of data acquisition. For further details of the receiver capabilities see section \(\|\) on the digital signal averager.

After digitization each signal is averaged for the desired number of cycles, then Fourier transformed to yield spectral information on the odd harmonics of the signal. These values are printed on a thermal printer in one of two forms; either real and complex parts, or amplitude and phase.

The analog signals from all channels were also monitored continuously by means of two Gould paper-chart recorders. This enables the operator to interrupt and recommence the signal averaging, should interference from lightning or large spheric fluctuations degrade the data. A block schematic of the data acquisition system is shown in Section 11.

Method of Interpretation

The interpretation of the electromagnetic sounding data (amplitude and phase) has been carried out using a direct one-dimensional (layered earth) inversion method. An initial estimate of the model parameters is made, and the inversion algorithm modifies these parameters until a bestfit, in the weighted-least-squares sense, is found between the observed data and the model predicted data. The application of direct inversion methods in electrical exploration has been described by Wu (1968), Parker (1970), Glenn (1973), Inman et al, (1973).

The inverse problem can be stated mathematically as
\[
\begin{equation*}
\phi=\sum_{i=1}^{n} w_{i}^{2}\left[y_{i}-f\left(b^{0}, x_{i}\right)\right]^{2} \tag{1}
\end{equation*}
\]
where
\(N\) is the number of observed data
\(w_{i}\) is the weighting factor for the \(i^{\text {th }}\) data value
\(y_{i}\) is the ith observed data (i.e. amplitude or phase)
b is an initial estimate of the \(M\) model parameters (e.g. resistivity and layer thickness)
\(x_{i}\) is the known dependent variables (e.g., frequency and geometry)
```

f is the non-linear function which relates the parameter b°,
x_{i}, to the observed quantities phase and amplitude.

```

Simply stated, the inverse problem is to find a set of model parameters, \(b_{j}\) which minimize \(\phi\). The values of \(b_{j}\) which minimize (1) are given by the solution to the set of equations:
\[
\begin{equation*}
\frac{\partial \phi}{\partial b_{j}}=0 \quad j=1, M \tag{2}
\end{equation*}
\]

Writing (1) in this form, we obtain
\[
\begin{equation*}
\sum_{i=1}^{n} w_{i}^{2} f_{i} \frac{\partial f_{i}}{\partial b_{j}}=\sum_{i=1}^{n} w_{i}^{2} y_{i} \frac{\partial f_{i}}{\partial b_{j}}, \quad j=1, M \tag{3}
\end{equation*}
\]
where
\[
f_{i}=f\left(\underline{b}, x_{i}\right) .
\]

In general, the function \(f(\underset{\sim}{b}, x)\) is a non-linear function of \(b_{j}\); thus making solution of (3) in closed form impossible. In practice \(\phi\) is minimized by an interative technique.

\section*{Inversion Algorithm}

The iterative weighted-least-squares algorithm used to interpret the EM-60 data follows a modified Marquardt approach. The model function \(f\left(b^{\circ}, x\right)\) in equation (1) is expanded as a Taylor series about the current estimate, \(\underset{\sim}{b}\), and only the first order terms are retained. This yields a linear estimate of the parameter changes, \(\underset{\sim}{t}\), needed to reach the minimum of \(\phi\). The classic least squares statement of the problem would be
\[
\begin{equation*}
[A]_{u}=q, \tag{4}
\end{equation*}
\]
where
\[
[\mathrm{A}]=[\mathrm{P}]^{\top}[0][\mathrm{P}],
\]
and
\[
g=[P]^{\top}[Q][y-f]
\]
\(P\) is the \((N X M)\) matrix with elements \(\left.\frac{\partial f_{i}}{\partial b_{j}}\right|_{b=b}\) current \(\quad\) and \(Q\) is the weight matrix.

The least squares estimate of \(t\) is given by
\[
\begin{equation*}
\stackrel{t}{\sim}=\left([A]^{T}[A]\right)^{-1}[A]^{T} \underset{\sim}{g} \tag{5}
\end{equation*}
\]

This linear estimate of the changes needed in the parameter vector can become unstable when ( \([A]^{\top}[A]\) ) is nearly singular because the inverse blows up. (Instability means elements of \(t\) become so large they lie far outside a linear region about the present \(b\) and thus are invalid estimates.) To prevent this, a constant named a Ridge Regression estimate is added to the diagonal terms of \(\left([A]^{T}[A]\right)\). The so-called Ridge Regression estimate of \(t\) is:
\[
\begin{equation*}
{\underset{v}{t}}_{R R}=\left([A]^{\top}[A]+[1] K\right)^{-1}[A]^{T} \underset{\sim}{g} \tag{6}
\end{equation*}
\]

The benefit of (6) is that the inversion of \(\left([A]^{\top}[A]+[1] K\right)\) is stable. The value of \(K\) is varied throughout the inversion. At first the smallest value of \(K\) is found for which the estimate \(t_{R R}\) yields a new model with a better fit to the data. As the interative process nears a minimum, the value of \(K\) is decreased so as to approach the classic least squares inverse.

The weighting matrix \(Q\) is a diagonal matrix with the diagonal terms equal to the inverse of the data variance. In this way, the residual for each data point is compared with its expected error.
\[
Q=\frac{1}{\sigma^{2}}\left[\begin{array}{cccc}
\frac{1}{\sigma_{1}^{2}} & & & \\
& \frac{1}{\sigma_{2}^{2}} & \cdot & \\
& & \cdot & \\
& & \frac{1}{\sigma_{N^{2}}}
\end{array}\right]
\]
where
\(\sigma\) is a scalar factor called the problem standard deviation.

\section*{Statistical Evaluation of a Model}

A set of model parameters, \(\underset{\sim}{b}\), which minimize (1) is considered a good approximation with respect to the data if
\[
\begin{equation*}
\left(x_{F}^{2}\right)_{1-\alpha} \geq\left(x_{F}^{2}\right)_{0} \tag{7}
\end{equation*}
\]
where \(\left(X_{F}^{2}\right)_{1-\alpha}\) is the chi-square value at the \((1-\alpha)\) confidence level with \(F=N-M\) degrees of freedom. The experimental value of the chi-square is given by
\[
\left(x_{F}^{2}\right)_{0}=\frac{\hat{\sigma}^{2}}{\sigma^{2}},
\]
where
\[
\hat{\alpha}^{2}=\frac{[y-f]^{\top}[Q]_{J=1}[y-f]}{N-M}=\frac{\phi M I N}{N-M} .
\]
\(\wedge\)
\(\hat{\sigma}\) is an estimate of the true problem standard deviation. Because data errors are expressed as percent of the actual data and used as the weights in Q, \(\sigma\) is assumed to be 1 (Jain, 1978).

The uncertainty in the estimated model parameters is given as (Bevington, 1969)
\[
\begin{equation*}
\sigma b_{j}^{2}=\sigma^{2}\left(\operatorname{cov}(P)_{j j}\right) \tag{8}
\end{equation*}
\]
where the parameter covariance matrix, cov ( \(P\) ), is written as
\[
\begin{equation*}
\operatorname{cov}(P)=\left\{[P]^{\top}[Q]_{\alpha=1}[P]\right\}^{-1} . \tag{9}
\end{equation*}
\]

Equation (8) gives the parameter variance for a linear solution only. In the case of a non-linear problem, as this one, (8) can be used as an approximation in conjunction with the parameter correlations. The parameter correlations are a measure of the linear dependence between parameters, and are given by
\[
\operatorname{CoRR}\left(b_{i j}\right)=\frac{\operatorname{cov}(P)_{i j}}{\operatorname{cov}(P)_{i i} \operatorname{cov}(P)_{j j}}
\]

If the value of \(\operatorname{CORR}\left(b_{i j}\right)\) is near unity, then the parameters \(b_{i}\) and \(b_{j}\) are strongly correlated and nearly linearly dependent. In such a case the individual parameters are not well determined; rather, their ratio (if correlation coefficient is +1 ) or product (if correlation coefficient is -1) can be determined from the data.

If the correlations are small, then the standard deviations, given by the square roots of the diagonals of (8), are a good measure of the uncertainty of each parameter. If, however, two parameters are highly correlated, CORR \(b_{i j} \simeq \pm 1\), then the standard deviations will be larger than the actual uncertainties. Figure 3 illustrates this fact with a generalized slice of solution space. The two coordinate axes correspond to two parameters of the estimated layered earth model. The ellipse indicates a confidence region within which the residual sum of squares, \(\phi\), is expected to lie for a certain percent of the repeated experiments. This region also defines the values of the parameter \(\rho_{2}\) (resistivity) and \(t_{2}\) (thickness) which will give a residual sum of squares within the contour. The origin is defined by the parameter value at the final


Figure 3. Generalized slice of solution space.
solution. The tilt of the axis of the ellipse is a measure of the degree of correlation between the two parameters. If the standard deviations from (8) are taken to be the true deviation estimates, then the ellipse is enclosed by a large box whose sides are defined by the standard deviation. The box, which ignores parameters correlation, represents a much larger confidence region than the ellipse. By using the standard deviation implied by the box, one obtains a very conservative estimate of the parameter confidence interval for correlated parameters. Therefore, by considering the standard deviations in conjunction with parameter correlations, a more realistic parameter standard deviation can be arrived at, which is always less or equal to the standard deviation computed from (8).

For a further description of the inversion method and procedure, see Jain (1978).

\section*{Combined Data Interpretation}

During the EM sounding survey carried out in Nevada, three orthogonal components of magnetic field were measured for each transmitter-receiver location. This provided four sounding curves: the amplitude and phase at selected frequencies for both the vertical and radial components, \(\left|H_{r}\right|\), \(\left|H_{z}\right|, H_{r}\) phase and \(H_{z}\) phase. The tangential magnetic field would be zero over a horizontal uniform medium. The amplitude of this component can thus be used as a qualitative measure of the inhomogeneity of the ground. If each sounding curve were inverted separately, four different earth models would result. These would then have to be averaged in some way to obtain a single model. A more objective approach is to find a single model which best fits all the data simultaneously. In this approach each data point is first weighted by its standard error (defined as the standard deviation divided by the square root of the number of samples) to set its relative importance and accuracy. All data sets are then inverted simultaneously.

Survey Results

The survey line E-E' crosses Grass Valley from southeast to northwest, passing approximately 1 km northeast of Leach Hot Springs (Figure 2 ). The orientation of the line is approximately \(45^{\circ}\) to the strike of the local geologic structure. Sounding data were taken with the transmitter as station 3 West and receiver locations at 1, 2, 4, and 5 West.

The observed field data and their standard eppors for the four soundings are tabulated in Appendix \(A\), and are illustrated in Figures (4) through (15). The transmitter-receiver locations are indicated on each figure (e.g. T3-R4 stands for transmitter at 3 West and receiver at 4 West). The standard errors listed in Appendix A of this section, are not plotted on Figures (4) through (15) since they would not show up on the scales used.

As previously discussed, the four sets of sounding data (amplitude and phase of \(H_{z}\) and \(H_{r}\) ) were simultaneously inverted to obtain an overall best-fit model. The standard errors listed in Appendix A were derived from the diagonal weighting matrix [0].

Ordinarily, considerable effort might be needed to originate a set of initial model parameters to begin the data inversions. All existing geological and geophysical data must be considered in making a first guess. However, since this had already been done by Jain (1978), the final models obtained from his work were used as starting models in the interpretation of data. Previous data clearly indicated a basic three-layer structure with a fairly thick and conductive middle layer overlying and underlying more resistive layers. In cases where a threelayer model resulted in poor parameter resolution, a two-layer model was used to more accurately define the depth to and resistivity of the conductive layer. As previously noted by Jain (1978) for the three-layer case, the resistivity of the bottom layer is very poorly resolved. Whether \(\rho_{3}=1\) or \(100 \Omega \mathrm{~m}\) makes little difference on the other parameters, and so we use the higher value as a constant.

Figures 4 and 5 present the data for sounding T3-R1. Here the three-layer model fits the data fairly well and the model parameters are well resolved. Figures 6 and 7 present the data for sounding T3-R2 with another three-layer model fit to the data. Figures 8 and 9 represent a two-layer fit to the same data. Note that the common parameters between the two models have virtually the same values. However, the resolution of the two-layer model parameters is much better, lending increased confidence in the depth to and resistivity of the conductive target.

Figures 10 through 13 presenting data for \(T 3-R 4\) show the same situation as found for T3-R2. Figures 14 and 15 are for \(T 3-R 5\) and yield a three-layer model with good parameter resolution.

In general, all the models are consistent with the seeming exception of the models for T3-R2. However, \(\rho_{2}\) and \(h_{2}\) for \(T 3-R 2\) are highly correlated, correlation coefficient \(=0.99\). This means that the ratio \(h_{2} / \rho_{2}\) is all that can be determined from the inversion. Therefore a thicker, more resistive middle layer (which would keep the ratio \(h_{2} / \rho_{2}\) constant) would also fit the data. Thus, a general model of \(8-10\) תm, 500 m thick top layer above a 100 am basement is consistent with all the data obtained. The models interpreted from data previously taken by Jain (1978) are shown in Figure 16 for comparison.


XBL7810-6562

Figure 4. Amplitude spectra, T3-RI.


XBL 7810-6560

Figure 5. Phase spectra, T3-RI.


XBL 7810-6561

Figure 6. Amplitude spectra, T3-R2.


Figure 7. Phase spectra, T3-R2.


XBL 7810-6563

Figure 8. Amplitude spectra, T3-R2, two-layer fit.


Figure 9. Phase spectra, T3-R2, two-layer fit.


XBL 7810-6558

Figure 10. Amplitude spectra, T3-R4.


Figure 11. Phase spectra, T3-R4.


XBL \(7810-6557\)

Figure 12. Amplitude spectra, T3-R4, two-layer fit.


Figure 13. Phase spectra, T3-R4, two-layer fit.


XBL 7810-6554

Figure 14. Amplitude spectra, T3-R5.


Figure 15. Phase spectra, T3-R5.


XBL 784-8029

Figure 16. Resistivity sections along Line E-E' obtained from interpretations of 1 km and 2 km sounding data (after Jain, 1978).

\section*{APPENDIX A}

TABULATION OF RESULTS
\(T 3-R 1\)
Normalized Field \({ }^{*}\)
Freq.
\begin{tabular}{ccc} 
& \multicolumn{2}{c}{ Normalized Field* } \\
Freq. & \(H_{z}\) & \(H_{r}\) \\
0.1 & \(1.105 \pm 0.4\) & \(0.220 \pm 7.4\) \\
0.3 & \(1.255 \pm 0.52\) & \(0.548 \pm 3.4\) \\
0.5 & \(1.386 \pm 0.54\) & \(0.733 \pm 3.6\) \\
0.7 & \(1.450 \pm 0.71\) & \(0.904 \pm 2.8\) \\
1.0 & \(1.418 \pm 0.21\) & \(0.930 \pm 0.66\) \\
3.0 & \(1.138 \pm 0.12\) & \(1.095 \pm 0.30\) \\
5.0 & \(0.942 \pm 0.32\) & \(1.092 \pm 0.17\) \\
10.0 & \(0.648 \pm 0.15\) & \(0.989 \pm 0.08\) \\
30.0 & \(0.377 \pm 1.5\) & \(0.740 \pm 0.48\)
\end{tabular}

\section*{T3-R2}
\begin{tabular}{rl}
\(181.95 \pm 0.03\) & \(286.60 \pm 1.27\) \\
\(183.67 \pm 0.02\) & \(271.70 \pm 1.26\) \\
\(184.82 \pm 0.09\) & \(262.17 \pm 0.56\) \\
\(185.25 \pm 0.05\) & \(251.90 \pm 0.62\) \\
\(184.31 \pm 0.01\) & \(243.12 \pm 0.14\) \\
\(180.92 \pm 0.01\) & \(233.71 \pm 0.15\) \\
\(176.88 \pm 0.02\) & \(228.75 \pm 0.10\) \\
\(169.83 \pm 0.18\) & \(219.26 \pm 0.58\) \\
\(160.44 \pm 0.02\) & \(207.44 \pm 0.01\) \\
\(130.17 \pm 0.20\) & \(182.27 \pm 0.06\) \\
\(94.74 \pm 0.39\) & \(159.00 \pm 0.11\) \\
\(73.60 \pm 2.10\) & \(151.42 \pm 1.0\)
\end{tabular}

T3-R4
\begin{tabular}{rr}
\(182.16 \pm 0.08\) & \(254.25 \pm 2.2\) \\
\(184.66 \pm 0.03\) & \(251.25 \pm 0.75\) \\
\(183.52 \pm 0.01\) & \(233.95 \pm 0.38\) \\
\(177.27 \pm 0.01\) & \(177.27 \pm 0.03\) \\
\(160.42 \pm 0.01\) & \(160.42 \pm 0.01\) \\
\(131.55 \pm 0.16\) & \(153.98 \pm 0.04\) \\
\(107.89 \pm 0.28\) & \(59.48 \pm 0.17\)
\end{tabular}

\section*{\(T 3-R 5\)}
\begin{tabular}{cl}
\(182.62 \pm 0.15\) & \(258.47 \pm 3.9\) \\
\(183.01 \pm 0.29\) & \(243.70 \pm 2.0\) \\
\(171.24 \pm 0.05\) & \(206.69 \pm 0.24\) \\
\(154.62 \pm 0.14\) & \(185.13 \pm 0.19\) \\
\(120.18 \pm 0.18\) & \(158.57 \pm 0.15\) \\
\(90.04 \pm 20.81\) & \(137.35 \pm 0.64\)
\end{tabular}
*Errors in degrees

\section*{REFERENCES}

Bevington, P.R., 1969, Data reduction and error analysis for the physical sciences: McGraw Hill Book Company, Inc., New York.

Beyer, J.H., 1977, Telluric and d.c. resistivity techniques applied to the geophysical investigation of Basin and Range Geothermal Systems: Ph.D. thesis, University of California, Berkeley.

Beyer, J.H., Dey, A., Liaw, A., Majer, E., Mcevilly, T.V., Morrison, H.F., and Wollenberg, H., 1976, Preliminary open file report: geological and geophysical studies in Grass Valley, Nevada, LBL-5262.

Beyer, J.H., Morrison, H.F., and Dey, A., 1975, Electrical exploration of geothermal systems in Basin and Range Valleys of Nevada; Proceedings: Second U.N. Symposium on the Development and Use of Geothermal Resources, May 1975, pp. 889-894.

Bhattacharyya, B.K., 19755, Propagation of transient electromagnetic waves in a conducting medium: Geophysics, v. 20, no. 4, pp. 959-961.

Dey, A., and Morpison, H.F., 1973, Electromagnetic coupling in frequency and time-domain induced polarization surveys over multilayered earth; Geophysics, v. 38, no. 2.

Frischknecht, F.C., 1967, Fields about an oscillating magnetic dipole over a two-layer earth, and application to ground and airborne electromagnetic surveys: Quarterly, Colorado School of Mines, v. 62, no. 1.

Ghosh, M.K., and Hallof, G., 1973, Loop-loop EM depth sounding method for delineating geothermal and permafrost zones: Abstract: Geophysics, c. 38, p. 1201 .

Glenn, W.E., Ryu, J., Ward, S.H., Peeples, J.J., and Phillips, R.J., 1973, The inversion of vertical magnetic dipole sounding data: Geophysics, v. 38, pp. 1109-1129.

Glenn, W.E., and Ward, S.H., 1976, Statistical evaluation of electrical sounding methods. Part 1: Experiment design: Geophysics, v. 41, pp. 1207-1221.

Harthill, N., 1976, Time domain electromagnetic soundings: IEEE Trans. on Geoscience Electronics, V. GE-14, pp. 256-260.

Inman, J.R., 1975, Resistivity inversion with Ridge regression: Geophysics, v. 40, pp. 798-817.

Inman, J.R., Ryu, J., and Ward, S.H., 1973, Resistivity inversion: Geophysics, v. 38, pp. 1088-1108.

\section*{REFERENCES}
(cont inued)

Jackson, D.B., and Keller, G.V., 1972, An electromagnetic sounding survey of the summit of Kilauea Volcano, Hawail: Journ. of Geophys. Res., v.77, pp. 4957-4967.

Jain, B.K., 1978, A low frequency electromagnetic prospecting system: Ph. D. thesis, University of California, Berkeley, LBL-7042, 128 pp.

Jain, B.K., and Morrison, H.F., 1976, Progress report, inductive resistivity survey in Grass Valley, Nevada: Lawrence Berkeley Laboratory, UCID-3997, 46 pp .

Jupp, D.L.B., and Vozoff, K., 1975, Stable iterative methods for the inversion of geophysical data: Geophys. J.R. Astr. Soc., v. 42, pp. 957-976.

Keller, G.V., 1970, Induction method in prospecting for hot water: Geothermics Special Issue 2.

Keller, G.V., and Rapolla, A., 1976, A comparison of two electromagnetic probing techniques: IEEE Trans. on Geoscience Electronics, v. GE-14, pp. 250-256.

Morrison, H.F., Hoversten, M., Riveros, C., and Oppliger, G., 1978, A low frequency electromagnetic prospecting system for geothermal exploration: Lawrence Berkeley Laboratory Report (in press).

Parker, R.L., 1970, The inverse problem of electrical conductivity in the mantle: Geophys. J.R.Astr. Soc., v. 22, pp. 121-138.

Ryu, J., Morrison, H.F., and Ward, S.H., 1970, Electromagnetic fields about a loop source of current: Geophysics, v. 35, pp. 862-896.

Smith, N.J., 1963, Geophysical activity in 1962: Geophysics, v. 28, no. 6, pp. 1048-1071.

Vanyan, L.L., 1967, Electromagnetic depth sounding: Consultants Bureau.
Wait, J.R., 1951, A conducting sphere in a time varying magnetic field: Geophysics, v. 16, no. 5, pp. 666-672.

Ward, S.H., 1977, A report on "Workshop on Electrical Methods in Geothermal Exploration": Geophysics, v. 42, pp. 664-666.

Ward, S.H., 1978, Program review: resource evaluation, reservoir confirmation, and exploration technology: University of Utah, Depart. of Geology and Geophysics, Technical Report 78-1701, b.5.1.

Wu, F.T., 1968, The inverse problem of magnetotelluric sounding: Geophyics, v. 35, pp. 972-979.

This report was done with support from the Department of Energy, Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the lawrence Berkeley Laboratory of the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of Califormia or the US Department of Energy to the exclusion of others that may be suitable.

\section*{TECHNICAL INFORMATION DEPARTMENT} LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720```

