Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

DESCRIPTION, FIELD TEST AND DATA ANALYSIS OF A CONTROL-SOURCE EM SYSTEM (EM-60)

Permalink

https://escholarship.org/uc/item/9jf2t7wt

Author

Morrison, H. F.

Publication Date 1978-10-01

LBL-7088 c. A Draft

LBL-70% &

Presented at the Lawerence Berkeley Laboratory, University of California Exhibit in conjunction with the 48th Annual Meeting of the Society of Exploration Geophysicist, Richmond Field Station, Lawerence Berkeley Laboratory, Berkeley, California, November 3, 1978

DESCRIPTION, FIELD TEST AND DATA ANALYSIS OF A CONTROL-SOURCE EM SYSTEM (EM-60)

H. F. Morrison, N. E. Goldstein, M. Hoversten,G. Oppliger, and C. Riveros

October 1978

RECEIVED LAWRENCE BERKELEY LABORATORY

JAN 29 1979

LIBRARY AND DOCUMENTS SECTION

Prepared for the U. S. Department of Energy under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

LBL-7088 DRAFT

DESCRIPTION, FIELD TEST AND DATA ANALYSIS OF A CONTROLLED-SOURCE EM SYSTEM (EM-60)

H.F. Morrison¹, N.E. Goldstein², M. Hoversten¹, G. Oppliger¹, and C. Riveros²

Department of Materials and Mineral Sciences Engineering Geosciences University of California Berkeley, California 94720

> ² Earth Sciences Division Lawrence Berkeley Laboratory Berkeley, California 94720

> > October 1978

Work performed for the U.S. Department of Energy Division of Geothermal Energy, under Contract W-7405-ENG-48

TABLE OF CONTENTS

INTRO	UCTION	1
١.	THE EM-60 TRANSMITTER	4
	List of Figures	4
	The Transmitter Magnetic Dipole Moment Field Tests	6 13 14
11.	A MICROPROCESSOR-BASED RECEIVER FOR THE EM-60 SYSTEM	18
	List of Figures	19
	List of Tables	20
	A Receiver for an EM Prospecting System An Adaptable Receiver Design Simple Operation High Accuracy Phase Measurements Relative Phase Measurements	21 29 29 35 37
	Signal Processing	38
	Operations	41
	Systems Programs Stored Parameters Control Keys Mode and Control Switches Diagnostic Warning Clocks Memory Test and Memory Error Codes	41 47 47 49 49
	Phase Polarity Conventions	49
	The Transform Phase Signs Phase Relative to Channel 1	49 49 52
	Development System	52
	<u>Appendix A</u> : A System Program for a 6 Channel EM Receiver	53
N	Appendix B: Board Layouts for Microcomputer Signal Processor	97

Table of Contents (continued)

	Page
III. GRASS VALLEY FIELD TEST	110
List of Figures	111
Survey Plan	112
Instrumentation and Procedures	112
Method of Interpretation	116
Inversion Algorithm	117
Statistical Evaluation of a Model	119
Combined Data Interpretation	122
Survey Results	123
Appendix A: Tabulation of Results	138
REFERENCES	140

INTRODUCTION

Electrical and electromagnetic (EM) techniques have been shown to be useful for delineating either the gross geological structure or the reservoir region of some convective geothermal systems. This application is based on the relationship between the bulk resistivity of the reservoir region and a complex function involving, among other things, temperature, type and concentration of ionic species, presence of a gas phase, effects from conducting sulfide or clay minerals, and fracture permeability. It has been noted in the literature that liquid-dominated geothermal systems exhibit a lower resistivity than surrounding rocks for several possible reasons: (a) increased ion mobility; (b) a higher concentration of ions; and (c) increased permeability and/or porosity. However, there is evidence that some geothermal reservoirs exhibit higher bulk resistivity than surrounding rock because of a vapor phase (The Geysers) or a porosity loss caused by secondary minerals (Cerro Prieto).

Of the techniques available to determine subsurface resistivities, dc resistivity has been the most widely used, but the magnetotelluric (MT) method has also been used in both reconnaissance and detailed studies; and several controlled-source EM techniques have been tried as well (Keller and Rapolla, 1976; Harthill, 1976; Jackson and Keller, 1972; Ghosh and Hallof, 1973; and Keller, 1970).

In the LBL/U.C. Berkeley evaluation of geophysical techniques for geothermal exploration, a successful test was made in Grass Valley, Nevada, of a prototype frequency-domain EM system (Jain and Morrison, 1976; Jain, 1978). These experiments showed that the EM soundings gave interpreted results that compared well with those from dipole-dipole dc resistivity surveys. Based on the need for continued development and demonstration of a field-worthy system (Ward, 1978), and supported through the Department of Energy/Division of Geothermal Energy's Exploration Technology Program, LBL and U.C. Berkeley have developed the EM-60 system, the number related to the 60 kW output of the motor generator used. The system, easily expandable to include time-domain measurements, is designed for use with a large moment, horizontal-coil transmitting antenna. This choice was based on the need to overcome a number of problems encountered in dc resistivity, MT and existing controlled-source EM systems:

- Because no ground contact is needed, the system is better suited to areas where the contact resistances are high, such as sand-covered desert regions or talus slopes on mountains.
- (2) A magnetic field detector can be used, thus eliminating the need for long wires, other than the transmitter coil, to be laid out and retrieved.
- (3) The transmitter can be installed at a convenient location, an especially helpful feature in terrain where access is limited, and a survey around the transmitter site is conducted by moving the receiver only.
- (4) Vertical resistivity soundings are made by varying frequency, not transmitter-receiver separation as in dc resistivity, thus avoiding interpretational difficulties introduced by lateral inhomogeneities.
- (5) By generating an EM field over a broad frequency range $(10^3 \text{ Hz to as low as } 10^{-3} \text{ Hz})$, the sounding curves provide both good resolution of the near-surface as well as depth penetration to basement.
- (6) The system would not depend on natural field activity, and would therefore provide reliable data in bands where the absence of natural signal often leads to incomplete MT data.

Despite considerable interest in higher frequency EM techniques for mineral exploration throughout much of the world, and for low-frequency EM techniques for petroleum exploration in Russia (Vanyan, 1967; Smith, 1963), surprisingly little work on EM soundings have been done in western countries. Compared to the rapid technological advances in seismic reflection, for example, developments in EM techniques have been slow. The difficulty in interpreting EM results even for simple geological settings,

problems in generating and measuring the low-frequency magnetic fields, and field problems associated with laying out and retrieving long heavy wires, have discouraged efforts to employ EM techniques, even in areas where seismic and other techniques are not useful.

This report, divided into three sections describing the transmitter, the receiver and data interpretations, should show that we have made significant technical advances toward the development of a large moment EM system employing a magnetic dipole source. Hopefully, the system will have practical application in geothermal and other surveys. THE EM-60 TRANSMITTER

LIST OF FIGURES

Figure 1.	The EM-60 in operation in Grass Valley, Nevada. (XBL 789-12515)	7
Figure 2.	A general block diagram of the EM-60 transmitter section. (XBL 788-2663)	9
Figure 3.	The crate with its cover removed, showing the modular arrays of transistor switches and the full-wave rectifier at left. (CBB 788-8381)	10
Figure 4.	Rear of transmitter truck showing the electronics box (top) and crate (bottom) swung out for operations. A 4/0 cable is being attached for tests. (CBB 781-953)	
Figure 5.	Fundamental period is set at the remote control box which also monitors transmitter operations. (CBB 781-957)	12
Figure 6.	Theoretical and observed dipole moments over the 10 ⁻³ to 10 ³ Hz frequency range for a circular loop of #6 cable. (XBL 788-2664A)	17

This section gives a brief description of the EM-60 transmitter, its general design and the considerations involved in the selection of a practical coil size and weight for routine field operations. The transmitter was designed with several criteria in mind:

- (a) The system should provide a large magnetic moment, greater than 10^6 MKS at low frequencies,
- (b) The system must operate reliably under adverse field conditions with a small field crew,
- (c) The system must be both safe and easy to operate; and
- (d) The system should be relatively inexpensive so that copies or similar systems may be replicated at a reasonable cost.

Except for the last point, for which we have no basis for judgment or comparison, all the criteria seem to have been met. The transmitter is operated by one man; however, laying out and retrieving the horizontal loop antenna requires a larger crew, the exact number of which would depend on loop weight, geometry and terrain, etc. Electronic schematics and mechanical drawings are not presented here, but are available. The key design feature of the transmitter is the transistorized switching arrays which permit rapid switching of large currents into the loop.

The Transmitter

The EM-60 system is powered by a Hercules gasoline engine linked to an aircraft 60kW, 400 Hz, 3ϕ alternator. These two components form the motor generator (MG) set, and are mounted in the back of a Dodge one-tonchassis, four-wheel-drive truck (Figure 1). Truck and motor-generator set were selected, in part, on the basis of availability of these components at LBL. The output is full-wave rectified and capable

Figure 1. The EM-60 in operation in Grass Valley, Nevada.

of providing ±150 volts, 400 amp to an external load which is a horizontal coil (Figure 2). The block diagram, Figure 2, shows that the direction of current flow through the coil is controlled by one of two transistors. These are actually parallel arrays of 6 to 60 transistors mounted modularly in a box called the "crate" (Figure 3). The crate also houses the full-wave rectifier.

Transistor modules are interchangeable, each consisting of a heat sink and fan to enhance heat dissipation. With 18 to 20 of the modules in place, up to 400 amp may be delivered to the coil. Above the crate is the electronics rack. This houses the amplifiers used to control the transistors in the crate (Figure 4). During travel and storage, crate and electronics boxes are carried internally, protected by a snug-fitting cover attached to the rear of the truck. During operations both are swung away for cooling and easier access.

Separate from the transmitter truck, but connected to it by cable, is the remote control box (Figure 5). This contains a crystal-controlled oscillator and dividers, so that a fundamental period of from 10^{-3} to 10^{3} can be selected. On the panel of the control unit are range and thumbwheel switches for selecting the fundamental period, as well as controls and indicator lights for the transmitter. The remote box may be taken 100-150 feet from the transmitter truck where the motor-generator noise level is lower. It was found, however, that the noise level drops off rapidly away from the truck, even when the louvered side panels are removed.

The operating frequency, f_0 , the inverse of the selected period, is amplified at the truck and used to turn the switching transistors on and off via the array driver chassis. Since isolation between the load voltages and the truck chassis is desirable, optical couplers link the array driver to the control signals. For the same reason, separate floating voltages are provided for the array driver. The crate controller links the truck to the remote box and houses the control electronics. These chassis are in the upper rack (Figure 4).

XBL 788-2663

(CBB 788-8381)

Figure 3. The crate with its cover removed, showing the modular arrays of transistor switches and the full-wave rectifier at left.

(CBB 781-953)

Figure 4. Rear of transmitter truck showing the electronics box (top) and crate (bottom) swung out for operations. A 4/0 cable is being attached for tests.

(CBB 781-957)

Figure 5. Fundamental period is set at the remote control-box which also monitors transmitter operations.

Magnetic Dipole Moment

For electromagnetic surveys it is usual to desire the largest moment, M, practical or possible. By definition:

$$M = NIA \tag{1}$$

where

N = number of turns, I = current in amperes, and A = coil area in meters².

The current, I, defined by Ohm's Law is:

$$I = \frac{V}{Z} , \qquad (2)$$

and depends on the voltage, V, from the rectifiers and the impedance, Z, of the loop.

The EM-60 is a square-wave voltage generator, switching between +150 and -150 volts. At low frequencies, the inductive nature of the coil can be ignored and the moment can be given as

$$M = \frac{NVA}{R} , \qquad (3)$$

where V is ± 150 volts, and R is the resistance of the coil.

Coil resistance is given as:

$$R = \rho \ell \tag{4}$$

where ρ is the resistance per unit length of wire, and ℓ is the total length of wire in the coil. For a circular coil the area, A, may be expressed in terms of the coil length as

$$A = \frac{\ell^2}{4\pi N^2} \quad . \tag{5}$$

Substituting equations 4 and 5 into equation 3, the dipole moment is given in terms of the wire parameters useful in planning a field survey,

$$M = \frac{V\ell}{4\pi\rho N}$$
(6)

This shows that the maximum moment from a given length of wire is produced using only one turn. However, in many field situations, terrain, vegetation, and/or water may dictate the use of smaller area, multi-turn coils. Also important in surveys are the total weight of wire that can be brought into the field and the amount of current that may safely be carried through the wire. Higher currents than those recommended can sometimes be used so long as the heating effects do not pose a fire hazard or create other problems; e.g., a hot wire melting into ice would be difficult to retrieve.

For several wire sizes that have been used or considered for use with the EM-60, we list in Table 1 the minimum wire length considered safe. For these lengths heating is only slightly detectable by hand. Table 1 also shows the corresponding weights for the minimum lengths. Initially, we contemplated using a 4/0 welding cable to realize the 400 400 amp capability of the EM-60. This would require laying out and retrieving at least 4 km of cable weighing 4000 kg, not an insignificant task for men and machines. Because LBL does not have field equipment to handle cable of this length and weight, and because the parameters are antithetical to a cost-effective exploration method, field tests and surveys have been conducted with shorter lengths of the smaller #10 and #6 cables. Therefore, the EM-60 has been operated well below its full capability, delivering typically ±63 amperes to the coil.

Field Tests

The EM-60 was given its first full-scale field test in Grass Valley, Nevada during July 1978. The site was chosen because previous electrical and electromagnetic surveys along established geophysical lines had provided us with a subsurface electrical model against which the EM-60 results could be compared. The terrain is flat and open, making loop

TABL	E	And and a
------	---	-----------

		WIRE S	IZE	
PARAMETER	10	6	2.	4/0
Wire resistance/km (/km)	3.28	1.30	.513	.160
Weight (kg/km)	49	118	299	955
Mlnimum coil length to prevent excessive heating (km)	1.8	2.3	3.3	4.2
Minimum coil weight ⁽¹⁾ to prevent excessive heating (kg)	86	273	972	4000
Current carrying capacity of minimum length cable (amps)	25	50	90	225

DESIGN CONSIDERATIONS FOR THE EM-60 TRANSMITTER COIL

(1) Weight does not include weight of insulation.

 \overline{Q}

handling easy. The coil used consisted of four turns of #6 wire, 100m in diameter and 1372m in total length. The 115m of cable not used in the loop provided pigtails to the transmitter truck. Figure 6 shows a comparison of calculated dipole moments for various turn-area combinations and the measured moment for the coil used in Grass Valley. The dipole moments are calculated on the basis of 126 amp peak-to-peak delivered to the coils at low frequency. Depending on coil diameter and number of turns, a cut-off frequency exists above which the dipole moment declines because of the inductive reactance. In practice the measured dipole moment did not quite follow the theoretical curves above the cut-off frequency. This is because the load, due to its reactive nature, caused the motor-generator to labor less at higher frequencies, thus increasing the effective power input to the loop.

Current in the coil was monitored by means of a 0.010, 0.1 percent shunt resistor. This shunt also provided the reference voltage carried to channel 1 of the receiver by means of a twisted pair of wires. The reference voltage served as the current amplitude and phase reference at the microprocessor-based receiver described in Section II of this report.

Except for refueling operations, the transmitter operated continuously and without failure during the five days of field operations. During this time the ambient temperature exceeded 42°C in the shade, and the longest continuous run was nine hours.

XBL 788 - 2664A

Figure 6. Theoretical and observed dipole moments over the 10^{-3} to 10^{3} Hz frequency range for a circular loop of #6 cable.

A MICROCOMPUTER-BASED RECEIVER FOR THE EM SYSTEM

LIST OF FIGURES

÷

e.

Figure 1.	A low frequency electromagnetic prospecting system. (XBL 786-2575)	22
Figure 2.	EM receiver station. (XBL 786-2576)	23
Figure 3.	Liquid Crystal Display Format.	25
Figure 4.	System hardware structure for M6800 microcomputer signal processor. (XBL 786-2578)	30
Figure 5.	Maximum phase error using 16-bit fixed point constants. Fortran simulation of micro-computer arithmetic.	36
Figure 6.	M6800 microcomputer signal processor. (CBB 7810-13519)	39
Figure 7.	Simplified program structure for M6800 micro- computer signal processor.	40
Figure 8.	LCD and keypad interface. (XBL 7810-11974)	98
Figure 9.	Digital to analog converter. (XBL 7810-11975)	99
Figure 10.	Interface board layout. (XBL 7810-11976)	100
Figure 11.	Programmable sample and cycle timer. (XBL 7810-11977)	101
Figure 12.	Programmable sample and cycle timer. (XBL 7810-11978)	102
Figure 13.	Data acquisition board. (XBL 7810-11979)	103
Figure 14.	Data acquisition board layout. (XBL 7810-11980)	104
Figure 15.	2K RAM section on memory board. (XBL 7810-11981)	105
Figure 16.	5K EPROM section on memory board. (XBL 7810-11982)	106
Figure 17.	Memory board layout. (XBL 7810-11983)	107
Figure 18.	CPU board. (XBL 7810-11984)	108
Figure 19.	CPU board layout. (XBL 7810-11973)	109

LIST OF TABLES

Table		Thermal Printer Output Format	26
Table	2.	Chart Recorder and Oscilloscope Display	27
Table	3.	M6800 Microcomputer Signal Processor Programmed as a Six Channel Waveform Stacking, Harmonic Analyzer	28
Table	4.	M6800 Signal Processor Backplane	31
Table	5.	M6800 Microcomputer Signal Processor Special Features	32
Table	6.	Computer Selection of Number of Points per Cycle and Analog to Digital Conversion Word Size	33
Table	7.	Receiver Operation Procedure	34
Table	8.	System Programs	42
Table	9.	Numerical Control Parameters and Stored Transform Results	43
Table	10.	Other Stored Parameters	44
Table	11.	Control Keys	45
Table	12.	Mode Switches	46
Table	13.	Control Switches	48
Table	14.	Warning Codes	50
Table	15.	Memory Error Codes	51

A Receiver for an EM Prospecting System

This section describes a programmable, multichannel, multi-frequency, phase-sensitive receiver. The receiver was designed and built in the Engineering Geoscience Group, Department of Materials Science and Mineral Engineering, U.C. Berkeley, as part of a Lawrence Berkeley Laboratory project to develop for geothermal exploration, a large-moment electromagnetic prospecting system. The transmitter for this system, described in the previous section, consists of a 60-kw motor-generator, powertransister switching circuitry and a horizontal loop antenna. At a receiver station the magnetic fields are detected by means of a 3component SQUID magnetometer. The signals are then conditioned by a set of amplifier-filters, and processed by the microcomputer-controlled frequency-domain receiver (Figures 1 and 2). The electric field components may also be detected and processed if so desired. Field tests at Grass Valley, Nevada, described in the following section, showed the system capable of obtaining well-defined sounding curves (amplitude and phase of magnetic fields) from 1 kHz down to 0.1 Hz. Transmitter-receiver separations of 1 to 2 km were used with transmitter moments of about 2×10^{6} MKS.

Measurements at frequencies below 0.1 Hz were made, but the statistical error grows larger with decreasing frequency because of the rapidly worsening signal-to-noise ratio. The noise is geomagnetic fluctuations, the spectrum of which varies approximately as 1/f. Although the receiver is designed for frequencies to 10^{-3} Hz (1000 second period), obtaining useful information below 10^{-1} Hz would depend on longer averaging times and larger primary fields than used during tests. Low frequency information might also be obtained by means of a magnetic gradiometer detector to cancel common geomagnetic noise.

A low frequency electromagnetic prospecting system

XBL 786-2575

Figure 1. A low frequency electromagnetic prospecting system.

XBL 786-2576

Figure 2. EM receiver station.

The field tests showed it was practical to analyze the first 4 odd harmonics (1, 3, 5 and 7) in the transmitted square-wave at one time. This reduces the number of frequency changes at the transmitter to only one per decade for frequencies below 100 Hz. In tests, overlapping spectral estimates were obtained from closely-spaced fundamental and harmonic frequencies, and the comparisons were good.

Through the keypad the operator is able to set the parameters controlling the signal processing, such as:

- a) Period of the fundamental current waveform.
- b) The maximum number of odd harmonics of the waveform, up to 16, to be measured.
- c) The number of cycles of the signal to be averaged prior to Fourier decomposition.
- d) The number of input channels (up to 6; e.g., 3 magnetic and 2 telluric and a reference from the transmitter).

Amplitude and phase information at each harmonic can be displayed sequentially on the receiver's five-digit LCD (Figure 3). However, it is more efficient to record the data on the optional six-column thermal printer. Table I gives an example of the thermal printer output format. In addition, the operator may call routines which display the stored wave forms on an oscilloscope, or sequentially dump them to a chart recorder. Descriptions and examples of chart recorder and oscilloscope displays are given in Table 2.

Table 3 lists the receiver's basic specifications and special features.

Figure 3. Liquid Crystal Display Format.

TABLE 1

THERMAL PRINTER OUTPUT FORMAT

				and the second s	STATE	ON N	0.				
			ก๊กเา	kapalijatu national konjulativata jaren kanatara	RUN NO	Э.					
			10	Ladigation and a second se	NO. OF	= CY	CLES AVE	RAGED	(EXPONEN	Γ OF	2)
			1.0 1	entre anternation de la constant de	PERIO) IN	MILLISE	CONDS			
			<i>0 1</i> .	estanosesesesta a secondaria de la companya de la c	HARMON	VIC	NO.			u.	
	a		3 8 4 9.3	•44@201+420204000000000000000000000000000000	AMPLIT	rude	IN MILL	IVOLT	S OR REAL	1	
СН	1		2.9095	ensinggestationedesagenetationedesagene	PHASE	IN	DEGREES	OR	IMAGINARY		
			38490		ÂMP	or	REAL				
СН	2			e-Gallystonikkalistatiya <u>n externalisesia</u> tat	PHASE	or	IMAG				
					AMP	or	REAL				
<u>cu</u>	3	~ =	5, , , , , , , , , , , , , , , , , , ,		PHASE	or	IMAG				
СП	3		3849.0	-	AMP	or	REAL				
СН	4	64 es	.0033	ense-standariu/ferrefile/blockstratici/blockst	PHASE	or	IMAG				
			3 8 4 9.3		AMP	or	REAL				
СН	5		.0044	e-speck/anistation/informationalization/informa	PHASE	or	IMAG				
			3849.6	energenite engenite and	AMP	or	REAL				
СН	6	•• ••	.0056	8M-02205550000-00000000000000000000000000	PHASE	or	IMAG				

1. When the rectangular mode is used, the in-phase or real part replaces amplitude and the quadrature or imaginary part replaces phase. Note that the real and imagniary parts are not scaled by the constant 1.19266 to obtain millivolts and are not phase corrected for the sampling skew. See Table 10 key no. 1.

CHART RECORDER AND OSCILLOSCOPE DISPLAY

Example of a chart recorder dump of six channels of a digitally stored sinewave at 16 points per cycle. Paper moved to left.

CHART AND SCOPE DISPLAY

Output voltage range	+/- 5 volts
Digital to analog conversion resolution	8 bits (39.6mvolts/bit)

CHART RECORDER DISPLAY

Points per cycle	Time required for dump
64	14 seconds
16	4.2 seconds
4	1.8 seconds

OSCILLOSCOPE DISPLAY

Points per cycle	Refresh rate	Display time window
64	45 HZ	22 m sec
16	150 HZ	6.7 m sec
4	350 HZ	2.9 m sec

.

TABLE 3

M6800 MICROCOMPUTER SIGNAL PROCESSOR

PROGRAMMED AS A

SIX CHANNEL WAVEFORM STACKING, HARMONIC ANALYZER

FREQUENCY RANGE

PHASE ACCURACY

NUMBER OF CYCLES AVERAGED

NUMBER OF POINTS SAMPLED PER CYCLE PER CHANNEL

NUMBER OF HARMONICS

ANALOG INPUTS CONFIGURATION INPUT VOLTAGE

ANALOG TO DIGITAL

SYNCHRONIZATION SIGNAL

PHASE REFERENCE

DETECTION ALGORITHM

QUANTITIES OUTPUT

DATA OUTPUT FORM

POWER CONSUMPTION

INTERNAL BATTERY LIFE

SIZE AND WEIGHT

 1.01×10^{-3} Hz to 1.0 KHz (990 sec to 1.0 msec)

Better than 0.05 degrees

Up to 2¹⁵ cycles

1.0 KHz to 101 Hz: 4 pts/cycle 100 Hz to 13 Hz: 16 pts/cycle 12.5 Hz to 0.00101 Hz: 64 pts/cycle

Up to 32, 8, or 2 harmonics for 64, 16, or 4 pts cycle, respectively

Six single-ended or differential channels

+ 5V signal voltage

12 bits binary

7.68 MHz, TTL internal or external, switch selectable

Phases of harmonics in the channel 1 waveform serve as phase references for channels 2 to 6

16 and 4 pts/cycle (8 bit data resolution) i. acquire 8 cycles of data

- ii. stack data, repeat i
- iii. sine and cosine transform stacked data

l6 and 64 pts/cycle (12 bit data resolution) i. acquire and stack data continuously

ii. sine and cosine and transform stacked data

Amplitudes, phases, number of cycles averaged, harmonic number, period of fundamental, station no., and run no.

5 digit LCD and 6 column thermal printer

10-15 watts

8-10 hours continuous

9 x 16 x 16 inches, 35 lbs.

An Adaptable Receiver Design

Although the instrument was designed as a specialized receiver for a particular EM system, it has a general structure adaptable to many signal processing tasks in geophysics. Perhaps the most important feature of this structure is programmability. This feature allows one to modify the function of the instrument through a programming change rather than by time-consuming hardware modifications.

The receiver's hardware is also designed for flexibility. The hardware is organized around a backplane bus containing the address, data, and control lines for the microcomputer (Figure 4 and Table 4). The chassis has eight circuit-card slots connected to this bus. Five slots are used in the present system; the other three may be used for system expansion; e.g., additional memory, special control boards, or analog filter circuits.

These features, combined with the instrument's calculator-like operation and portability, make it extremely promising as a general purpose receiver for exploration geophysics.

At present, a time-domain EM program is under development for the receiver, and other program additions are being considered.

Simple Operation

The receiver is simple to operate. When power is turned on or the reset switch is activated, the receiver automatically performs self-test routines and initializes all control parameters to bring itself to an operational state (Table 5). The program automatically selects the optimal number of points per cycle and analog to digital conversion word sizes for data acquisition operations (Table 6). Although the user has the option to select several control switches and parameters to increase the efficiency of the signal processing operations, the operator is required only to set the period and the number of cycles of waveform to be averaged, and call a signal processing routine. Table 7 gives a list of the steps the operator follows. These procedures will be discussed in more detial in following sections.

DATA, ADDRESS AND CONTROL BUS

XBL786-2578

Figure 4. System hardware structure for M6800 microcomputer signal processor.

M6800 SIGNAL PROCESSOR BACKPLANE

PIN NO.	NAME
1	-15 ^V
2	-15 ^V
3	+15 ^V
4	+15
5	0 ^V
6	0 ^V
7	+5 ^V
8	+5 ^V
9	AØ (LSB)
10	A1
11	A2
12	A3
13	A4
14	A5
15	A6
16	A7
17	А8
18	A9
19	A10
20	A11
21	A12
22	A13
23	A14
24	A15
25	DØ (LSB)
26	D1
27	D2
28	D3

\$

PIN NO	NAME
29	D4
30	D5
31	D6
32	D7
33	
34	
35	
36	
37	
38	
39	NMI
40	IRQ
41	Ø2
42	VMA
43	R/W
44	Øl
45	RST
46	HALT
47	
48	300 BAUD (x16)
49	PAGE ØØ
50	PAGE FF
51	+5 ^V
52	+5 ^V
53	0 ^V
54	0 ^v
55	-9 ^V
56	-9 ^v

M6800 MICROCOMPUTER SIGNAL PROCESSOR

SPECIAL FEATURES

- I. VERSATILE CONTROL ROUTINES ALLOW AUTOMATIC CALCULATION AND PRINTOUT OF SINGLE OR SELECTED GROUPS OF HARMONICS (E.G. ODD HARMONICS, 15TH THROUGH 1ST).
- II. CHART RECORDER DUMP OF STORED SIGNALS.
- III. OSCILLOSCOPE DISPLAY OF STORED SIGNALS.
- IV. VOLT METER FUNCTION DISPLAYS VOLTAGE ON SELECTED CHANNEL IN MILLIVOLTS. THIS ROUTINE IS USED TO SET GAIN LEVELS. THE SYSTEM SUPPLY VOLTAGE MAY BE CHECKED BY EXAMINING THE VOLTAGE ON CHANNEL 7.
- V. MAXIMUM VALUE FUNCTION FINDS MAXIMUM VALUE ON EACH OF THE STORED WAVEFORMS AND DISPLAYS VALUE IN MILLIVOLTS.
- VI. AUDIO TRANSDUCER ALERTS OPERATOR TO COMPLETION OF LONG SIGNAL AVERAGING OPERATIONS.
- VII. AUTOMATIC SYSTEM TEST ROUTINES:
 - A) TESTS 2K OF DATA STORAGE MEMORY (RAM) IDENTIFYING ANY DEFECTIVE MEMORY CHIP (16 OF THESE).
 - B) TESTS 4K OF PROGRAM STORAGE MEMORY (ROM) IDENTIFYING DEFECTIVE ROM CHIP (4 OF THESE).
 - C) TESTS FOR PRESENCE OF TIMING SIGNALS: CHECKS RATIOS OF SAMPLE TO CYCLE PULSES AT EACH OF 4, 16, AND 64 POINTS PER CYCLE: DISPLAYS ERROR-IDENTIFYING-CODES IF ERRORS ARE DETECTED.
 - D) WRITES TEST SQUARE WAVE INTO MEMORY FOR CHECK OUT OF TRANSFORM ROUTINES.
 - E) TESTS LIQUID CRYSTAL DISPLAY AND PRINTER.

COMPUTER SELECTION OF NO. OF POINTS PER CYCLE AND ANALOG TO DIGITAL CONVERSION WORD SIZE.

POINTS PER CYCLE

PERIOD RANGE

64	990 sec THROUGH 80 msec (0.00101 HZ) (12.5 HZ)
16	79 msec THROUGH 10 msec (12.658 HZ) (100 HZ)
4	9.0 msec THROUGH 1.0 msec (111.11 HZ) (1.0 KHZ)

ANALOG TO DIGITAL CONVERSION WORD SIZE

PERIOD RANGE

12 BIT WORDS	990 sec THROUGH 20 sec (0.00101 HZ) (50 HZ)
8 BIT WORDS	19 msec THROUGH 1.0 msec (52.63 HZ) (1.0 KHZ)

RECEIVER OPERATION PROCEDURE

Part 1 Set Control Switches and Connect Cables

- . Select internal or external 12 volt power source.
- . Turn receiver power on.
- . Select internal or external SYNC (7.68 MHZ).
- . Put run/load switch in run position.
- . Place mode switches in selected positions.
- . Press test switch on printer, before connecting printer.
- . Connect printer, turn printer power on.
- . Connect input and output cables.

Part 2 System Test

- . Press reset system test.
- Look for error codes and examine checksums.
 (see section on system test)

Part 3 Set Parameters

- . Enter Period: Press (PER), (NO.), (NO.), (NO.), (LCK PER)
- . Enter Harmonic No.: Press (HRM), (NO.), (NO.), (RTN)
- . Enter No. of Cyc. Avg.: Press (NO.CYC), (NO.), (NO.), (RTN)
- . Enter No. of Channels: Press (NO.CHL), (NO.), (NO.), (RTN)
- . Enter Station No.: Press (MEM), (2), (NO.), (NO.), (RTN)

Part 4 Call System Programs

- . Call volt meter routine for each channel and set gains. Press (RUN), (VLT), (NO.).
- . Call one of the acquisition routines e. g. (RUN), (A1)
- . Call scope display routine (RUN), (OSC), (1) or call chart display routine (RUN), (CHT)

High Accuracy Phase Measurements

The receiver was designed to make high accuracy phase and amplitude measurements under conditions of low signal-to-noise ratios. High accuracy measurements are particularly important for electromagnetic soundings at frequencies below about 10 Hz, where phase accuracies of 0.1 degree may be required to invert the soundings reliably.

The phase accuracy obtained from a given sinusoidal waveform, excluding aliasing, is a function of the signal or data resolution, the number of points per cycle, and the precision of the transform arithmetic. Figure 5 shows the maximum phase error that can be expected with a given resolution and number of points per cycle. If the signalto-noise level of the measured signal is known, Figure 5 may be used to estimate the number of times the waveform must be stacked to obtain a given phase accuracy. One may assume $N^{-\frac{1}{2}}$ reduction of noise.

Under favorable signal-to-noise conditions, exceptionally accurate phase measurements may be made. For example, laboratory tests have shown the receiver capable of measuring relative phases with accuracies better than 0.002 degree below 12.5 Hz, 0.006 degree below 100 Hz, and 0.05 degree below 1000 Hz.

The periods of the harmonics in the stacked waveforms correspond exactly to those analyzed by the sine and cosine transform routine, by definition of the harmonic content of a periodic waveform. This precise matching of waveform periods eliminates spectral smearing resulting from the finite data lengths, and makes the high accuracy phase measurements possible.

Figure 5. Maximum phase error using 16-bit fixed point constants. Fortran simulation of microcomputer arithmetic.

Relative Phase Measurements

The receiver operates as an independent unit, in the sense that it does not depend on control signals from the transmitter. The transmitter and receiver run asynchronously; each unit is driven by a separate crystal clock, having a frequency accuracy requirement of only 100 ppm. Phase measurements relative to the transmitter current are made by processing the transmitter current waveform (on channel 1) along with the magnetic field signals (on the other channels). The receiver then computes phase relative to the transmitter current by subtracting the calculated phase of the transmitter current from that of the other channels' phases. Any signal can be put on channel 1 to act as the phase reference for the other 5 channels.

The receiver acts as a narrow-band digital filter. The accuracy of the filter's center frequency is related directly to the accuracy of the clock controlling the signal-sampling circuitry. The sharpness or selectivity of the filter increases with the number of cycles averaged. If the receiver and transmitter clocks are not locked together, the transmitter and receiver will be operating at slightly different frequencies. This difference in frequencies puts a restriction on how sharp the receiver's digital filter may be made before the transmitted signal begins to be filtered out. Using clocks of 10 ppm accuracy, several thousand cycles of transmitter signal may be averaged with no detrimental effects due to filter selectivity.

It is also possible to lock the transmitter and receiver clocks together through the external 7.68 MHz clock input on the receiver. This requires telemetering the transmitter clock signal to the receiver but allows unrestricted stacking of the waveforms.

Frequency domain EM soundings can be made with the receiver in two ways. One approach involves the normalization of the phase and amplitude spectra of the magnetic field by the spectra of the transmitter current. This method requires that the voltage across a shunt resistor in the transmitter loop be brought to channel 1 of the receiver via a twisted pair of wires. These wires are the only physical connection between the transmitter and receiver, and provide an absolute phase and amplitude reference for the system. The second approach eliminates the need for a current reference from the transmitter by analyzing phase and amplitude relations between the vertical and horizontal magnetic fields, which define a polarization ellipse. The essential information on earth conductivity structures is contained in EM soundings produced by either the transmitter current reference or polarization ellipse approaches.

SIGNAL PROCESSING

Table 3 lists the principal features of the receiver, which is built around the M6800 microprocessor (Figure 6). The simplified program structure is shown in Figure 7, and the hardware structure is shown in Figure 4. A multichannel, 12-bit analog-to-digital conversion module is used to sequentially sample six channels of electrical signals. The sampled waveforms from each of the channels are stacked in memory to improve the signal-to-noise ratio, then normalized by the number of cycles averaged. The discrete Fourier transform is then obtained using a table of 16-bit sine and cosine constants and a software multiply routine using 16-bit fixed point operands and producing 32-bit products. In-phase and quadrature results from the transform are converted to phase (in degrees) and amplitude (in millivolts) using a CORDIC rotation method. Next, the phase-shift errors introduced by the sequential sampling of the six channels are corrected, and the phase of channel 1 is subtracted from the phases of channels 2 through 6. Thus, phases for signals on channels 2 through 6 are all relative to the phase of the signal on channel 1. The binary results of the processing are converted to BCD and printed out on a thermal printer. Table 1 gives

(CBB 7810-13519)

Figure 6. M6800 microcomputer signal processor.

Figure 7. Simplified program structure for M6800 microcomputer signal processor.

an example of the output format from the thermal printer. In this case, a common signal was entered onto all six channels. Amplitudes agree to within ± 0.3 millivolts, and the maximum phase error, on channel 6, is 0.0056 degrees (.0977 milliradians).

OPERATIONS

Table 5 lists special features of the receiver. In addition to the keypad accessible signal processing, waveform display and utility routines, the receiver contains a system test routine designed to test vital sections of system hardware. The system test routine is automatically called when the receiver is powered up and each time the reset switch is pressed. The automatic test programs are listed in Table 5, Sections VII A-E.

Systems Programs

The receiver has ten keypad accessible system programs which allow the operator to control the instrument's function. These programs are called by pressing the RUN key followed by the number key corresponding to the selected program. The key symbols and programs are defined in Table 8.

Stored Parameters

Three types of stored values may be accessed from the keypad: (1) operator-set control parameters, e.g., number of cycles averaged; (2) program-set parameters that may be examined by the operator, e.g., number of points per cycles; (3) signal processing results, e.g., phase and amplitude. The more frequently used parameters have been assigned separate control keys for faster access; less frequently used parameters are read by pressing MEM, then the number key associated with the particular parameter. Key symbols and parameter descriptions are given in Tables 9 and 10.

SYSTEM PROGRAMS

Kev	
Symbol	The RUN key followed by the program key number given on left calls ^A the following programs:
1 A1	Acquires a set of signals at the selected period and averages the selected number of cycles; then transforms and prints <u>a</u> single harmonic defined by HRM.
4 AEO	Acquires signals as the above program. Then transforms and prints <u>every other</u> harmonic beginning with HRM down through the first harmonic.
7 AAL	Acquires signals as above program. Then transforms and prints all harmonics beginning with HRM down through the first harmonic.
2 T I	Transforms and prints one harmonic defined by HRM.
5 TEO	Transforms and prints <u>every other harmonic</u> beginning with HRM down through the first harmonic.
8 TAL	Transforms and prints <u>all harmonics</u> beginning with HRM down through the first harmonic.
6 CHT	Dumps 6 channels of stored signals to chart recorder. See display format note. The keypad is not functional during this dump.
0 0SC	When followed by a number key (1 to 6), displays 6 channels of stored signals on oscilloscope. Scope trigger is posi- tioned in front of channel's data corresponding to previously entered number. Trigger position may be changed any number of times. Exit by pressing RTN. (Refresh rate is 45Hz).
6 MAX	When followed by a number key (1 to 6), for channel number, displays voltage (in millivolts) present on selected channel. The sampling frequency is 6 times the number of points per cycle.
	Channel seven is internally connected to the +5V supply line. Exit this routine by pressing RTN.
RTN	No program is called. Returns control to operating system.

TABLE 9 NUMERICAL CONTROL PARAMETERS AND STORED TRANSFORM RESULTS.

Key Symbol	
HRM	Harmonic Number
	Range 01 through (PTS/CYCLE)/2. RTN closes location.
NO. CYC	Number of Cycles Averaged
	Raises 2 to power entered.
	Range: 2 ⁰ through 2 ¹⁵ or 1 through 32,768
	RTN displays in decimal the number of cycles averaged and
	closes the location.
PER	Period in milliseconds
	e.g. 1.2 $3 = 1.2 \times 10^3$ msec
	No leading zeros; do not enter decimal point (range 9.9 5 through
	1.0 0). Period set by following entry of 3 digits by $\frac{LCK}{PER}$. RTN
	results in no change in period and closes location.
NO. CHI	Number of Channels
one	Range: 1 through 6
	Limits number of channels put through polar conversion and
	printing. RTN closes location.
AMP	Amplitude and Phase or (real and imaginary)
and	when this key is followed by a number 1 through 6 (Channel No.)
anu	display shows value for that channel.
PHS IMG	

OTHER STORED PARAMETERS

The MEM key followed by no. key accesses the following: key no.

- 0 Points per cycle. 64, #16 or 4. set by program. Function of period.
- Phase correction. Phase shift due to sampling time skew. Should be subtracted from channel N as (N -1) (PHASE COR) when using rectangular mode. Set by program. Function of harmonic and PTS/CYC.
- 2 <u>Station number</u>. Operator set. A two digit value with range of 00 through 99.
- 3 <u>Run number</u>. Operator set and program incremented each time a new set of data is acquired. A two digit value with range of 00 through 99.
- 4. <u>Phase accuracy control</u> for rectangular to polar conversion.
 Range 03 to 06. Parameter is initialized to 04.
 04 produces 0.014 degree accuracy with a maximum calculation time of 2 sec/channel.
 06 produces 0.0035 degree accuracy with a maximum calculation time of 8 sec/channel.

CONTROL KEYS

Key Symbol

RUN A Key calls one of ten programs defined by number keys. (See Table V for the list of system programs.

RTN Closes open parameter locations; and for system programs OSC, MAX, and VLT. It returns control to the operating system.

LCK Sends entered period to programmable sample timing board. PER

RUN B When followed by key no. Ø causes program to jump to next page of memory. This page is optional and user defined. System control or diagnostic programs may be placed on this page to extend the degree of specialization of this system, e.g., an IP program computing percent frequency effect.

MODE SWITCHES

1 RECT or POLAR

Selects mode in which transformed values will be presented. (Note: Rectangular mode values are not phase corrected for sampling skew and are not scaled by the constant (1.192659) to obtain values in millivolts per root HZ. Polar values <u>have</u> all corrections applied.) This switch is read by program at the end of the SIN-COS transform routine.

2 WAIT FOR CYCLE PULSE

Causes acquisition routines to wait for the beginning of next cycle before starting data acquistion. It is useful when working with periods greater than about 2 seconds, in that when deactivated it eliminates the waiting period before the beginning of the next cycle. This switch is read by the program for periods greater than 20ms (50HZ) only. Acquisition routines with smaller periods always wait for the cycle pulse.

3 REPEAT

Causes any of the three data acquisition routines to repeat their processing and printing operations until the switch is turned off. Also causes the system test routine to be repeatedly called.

4 DATA PROJECT

Prevents accidental overwriting of data sets in memory. The acquisition routines read this switch before acquiring new data sets.

During operations, the numerical control parameters (Part 3, Table 7) must be entered correctly, but not necessarily in a particular order. Table 9 provides detailed descriptions and examples of how the variables must be entered. Table 10 lists other stored parameters. The number of points-per-cycle sampled and phase corrections are set up by the program, but these values may be examined by the operator through the keypad. The phase accuracy control determines the accuracy of the rectangularto-polar conversion, and is preset automatically during system initialization. The only parameters that the operator may wish to change are the station number and the run number, which are used for data identification on the printer. The run number may be initialized to 0 each time transmission of a new fundamental period begins. After each averaging operation the run number will be automatically incremented.

Control Keys

There are four control keys. Two of these are used to call programs and the other two close memory locations after values have been entered. The control keys are described in Table 11.

Mode and Control Switches

There are four mode switches located in the upper left corner of the receiver front panel. These switches provide the following options; (1) rectangular or polar formats for the Fourier transform results; (2) waiting or not waiting for the beginning of the next waveform cycle before acquiring new data; (3) repeating the data collection and processing procedures or stopping after one operation; and, (4) protecting the waveforms stored in memory from being over-written or normal memory operation. These switches are described in Table 12.

In addition, there are four control switches in the center of the front panel (Table 13). Left to right the switches are used to: (1) select regular operation (RUN) or a program loading mode; (2) interrupt an executing program; (3) reset and test the system; and, (4) select internal or external synchronization clocks.

CONTROL SWITCHES

RESET - SYSTEM TEST

Momentary contact causes instrument to begin the system test sequence, testing memory and timing and initializing all system parameters. (See system test routine description.)

INTERRUPT

Momentary contact will interrupt and terminate the execution of any program. Control is given back to the operating system, parameters are not effected.

RUN/LOAD

Selects one of two sets of RESET and INTERRUPT vectors. <u>RUN</u> is the standard set for system operation. The load set corresponds to the Motorola MIKBUG vector set. If a MIKBUG oriented TTY interface board is present, programs may be loaded into memory and examined when this switch is in the load position. This switch has the potential to be used to select between two operating systems.

SYNC INT/EXT

Selects between internal and external 7.6800 MHz clocks for data sampling timing.

Diagnostic Warning Clocks

Diagnostic warning codes are provided to aid the operator in identifying incorrectly set parameters or system malfunctions. When an error is detected, the appropriate warning code is displayed on the two leastsignificant digits of the display; and in most cases, the program is then halted, disabling the keypad. When the displayed code corresponds to an improperly set parameter, the parameter may be re-entered after the interrupt switch is pressed. The warning codes are defined in Table 14.

Memory Test and Memory Error Codes

As part of the system test routine, the data and program memories are checked for errors. If a data memory (RAM) error is found, the program halts and a code identifying the defective chip is displayed. (See the RAM error codes in Table 15). The program memory (PROM) test routine sequentially calculates and displays a checksum for each of the IK PROM chips. Comparison of the displayed checksums with the correct values given in Table 15 allows identification of defective chips. (See the Memory Board Layout drawing, Figure 17, for chip locations.)

PHASE POLARITY CONVENTIONS

The Transform

Signals are SINE and COSINE transformed using an $\ell^{-i\omega t}$ convention (i.e. -sin ωt for sine transform and cos ωt for cosine transform).

Phase Signs

If a wave crest arrives prior to the crest of another wave of zero phase, the former wave is defined to have a positive phase advance.

WARNING CODES

- H1 Illegal number of cycles averaged
- H2 Illegal harmonic number
- H3 Illegal period
- H6 Waiting for cycle pulse
- H7 Waiting for sample pulse group
- H8 Incorrect ratio of sample to cycle pulses
- HH Incorrect use of AMP or PHS keys

MEMORY ERROR CODES

•

RAM ERROR CODES

ı

PROM CHECK SUMS

Each checksum is displayed for 1 sec.

1PP 6 2PP-P

3PP5L

4PP1P

Check sum symbols

Phase Relative to Channel 1

The computed phase on channels 2 through 6 are relative to channel 1 phase; that is, channel 1 phase is subtracted from the phases on the other channels.

The phase on channel I is measured relative to the beginning of the cycle pulse. This pulse has a precision period matching that of the transmitter, but the two are asynchronous.

DEVELOPMENT SYSTEM

Programs for this system were developed using a CDC COMPASS-based cross assembler, written by John Wood, Lawrence Berkeley Laboratory computer consultant. The source program was written and edited in the Geoscience Engineering Laboratory on a ADM-3 CRT Terminal using the NETED interactive editing program. After assembly the machine code was written onto a cassette tape and loaded into the development hardware for debugging. The development hardware consists of the EM receiver with an extra RAM memory board to simulate PROM and a teletype interface board with a MIKBUG operating system. APPENDIX A

0

A SYSTEM PROGRAM FOR A 6-CHANNEL EM RECEIVER

IDENT CAR, BEGIN SST M6800

********EM RECEIVER*******

会会	PURPOSE	8159	COPPLETE SYSTEM PROGRAM FOF A 6 CHANNEL EM RECEIVER	發告
祭 祭			STACKS 6 CHANNELS OF SIGNALS, SINE AND COSINE TRANSFORMS	帮 琴
营会			ANY HARMCNIC IN SIGNALS, OUTPUTS AMPLITUDES IN MILLIVOLTS	终 惨
会会			AND PHASES RELATIVE TO CHANNEL ONE IN DEGREES	除除
告告	AUTHOR	8	GARY L OPPLIGER , ENGINEERING GEOSCIENCE GROUP	會會
祭祭			UNIV. CF CAL BERKELEY.	会 啥
劳 劳	VERSION	48	2.0 JULY 12, 1978	资金

ب

********** CEFINITIONS ********

EQU 028000 BEGIN

** FIA ADRS DEFINITIONS **

PIAA1	EQU	0=FFE4	* LCD AND FRINTER PIAS
CPIAA1	EQU	0=FFE5	拳
PIA81	EQU	0=FFE6	\$
CPIA81	EQU	0=FFE7	举
PIAA2	EQU	0≘FFE8	*
CPIAA2	EQU	0 EFFE9	\$
PIABZ	EQU	OEFFEA	\$
CPIAB2	EQU	0 = FFEB	举
PIAA3	EQU	OEFFEC	* KEYPAC AND MODE
CPIAA3	EQU	OEFFED	4
PIAB3	EQU	0 EFFEE	* SWITCH FIA
CPIAB3	EQU	OEFFEF	举
PIAA4	EQU	0 = F F 0 8	* TIMER PIA
CPIAA4	EQU	0 = FF 0 9	2
PIAB4	EQU	OEFFOA	*
CPIAB4	EQU	0 = F F 0 B	举
PIAAS	EQU	OEFFOC	* ADC PIA
CPIAA5	EQU	0 m F F O D	<i>尽</i>
PIA85	EQU	0 SEF DE	輝
CPIA85	EQU	0 EFF OF	á.

PROGRAM STACK LOCATION***

CNLPPT

NCHPR

NOSHE

EQU

EQU

FOU

VAR+6

VAR+7

VAR+3

STACKP	EQU	0=14F	BOTTOM OF PROSEAM STACK (100 THROUGH 14F)
******V A F	IABLE	CEFINITION	2 含质黄黄白
FLAG12	EQU	0 = 49	1 BYTE EQ 1 IF 12 BIT AUC WORDS ARE USED
DATAB	EQU	$0 \equiv 4A$	2
PSHBOT	EQU	$0 \equiv 4C$	2
DIPICH	EQU	C = 4E	1 THIS VALUE MUST LEAD PTCYCH
PICYCH	EQU	0 = 4F	4
VAR	EQU	$0 \equiv 50$	SETS LOCATION OF BLOCK OF VARIABLES IN FAM
CYCAVG	EQU	VAR	1 BYTE
NCYCLE	EQU	VAR+1	SBALES
PISCYC	EQU	VAR+3	4
HPMNIC	EQU	VAR+4	1
CNTINC	EQU	VAR+5	1

1

1

1

	UATPT	EQU	VAR+9	2
	STORAR	FQU	VAR+11	
	TARIEP	FOU	VAR+13	2 55
	RCDOUT	FOU	STOPAG	2 RYTES
	QNITNI	FOU	TAPIED	2
	TARIER	FOU	VAEAIS	2
	CTODT	EQU	VADA47	2
	OUCAT	EQU	VARTEI	4
	CHUNI	EQU	VARATA	
	8	CON	UAC: > 20	3
	Y	EQU	VARAZU	
	XX	EUU	VAR+22	2
	U	EUU	VAR+24	4
	FF	EQU	VAR+58	4
2				
	SRTCH1	EQU	VAR+29	2
	SRTCH2	EQU	VAR+31	1
	SRTCH3	EQU	VAF+32	1
×5	EXPA	EQU	SRICH2	1
	COEB	EQU	SR TCH3	1
	HARM10	EQU	VAR+33	1
	VV	EQU	VAR+34	
	• •			
	C3	EQU	VV	MS * SCRATCH AREA
	C2	FOU	VVA1	* FOF BINBCD
	r4	FOU	VVA2	
	07	FOU	V V V V V V V V V V V V V V V V V V V	NC & HNCTCHEN DINARY INDIIT
	03	EQU	AAA2	HO ' UNDIONEU DINAKI INTUT
	UZ	EQU	V V * 4	THAXOUP 23 5115
	U1	EQU	VV+5	
	0014	EQU	VV+6	MS * DECIMAL OUTPUT
	OUT 3	EQU	VV +7	* FORMAT- 08 76 54 32
	OUT2	EQU	V V +8	举
	OUT1	EQU	V V + 9	LS *
	SUBT	EQU	VV+10	SCRATCH
	PHS1	EQU	VV+11	1 MS BYTE PHASE COR IN BINARY
	PHS2	EQU	VV+12	2 2 LS BYTES
	PHS10	EQU	Q=E1	4 EVTES
	PTCY10	FQU	NEFS	1 RYTE FTS/CVC TN RCD
	NTACO	FOU	NEFA	2 BY TES NO. OF TIMES ACQUST IS CALLED
	MCAVE	EUN	0_C0 0=C0	4 HAGMANTA NIL STADAGE LARATIAN
	ALCHIAL	EQU	0 <u>2</u> C O	A DATE
	NRON	EQU	V = C 9 0 - C 0	
	NJIN	EQU	V Z C M	
	SKICH4	EQU	0=20	1.
	SKICHS	EQU	VERU	
	SRICHO	EQU	USEU	
	ROTACC	EQU	DEF	1 VARIABLE FOR CONTROLLING ACCURACY OF ARCTAN FN.
	REAL	EQU	0 3 F O	2 HOLDS ADRS OF REAL VALUE
	IMAG	EQU	0 = F 2	2 HOLDS ADRS OF IMAG VALUE
	DIVTEN	EQU	0 = F 4	1 DIVIDE BY TEN FLAG (MOVE DECIMAL POINT LEFT)
	CHNO	EQU	0 = F5	1 CHANNEL NO.
6	QUAD	EQU	0 = F6	1 QUADRANT NO.
	*** DEFI	NITIONS	OF RAM STOR	AGE AREAS ###
× .	** UNUSE	D RAM A	REA (150 THR	OUGH 1FF) **
	RAMSTR	EQU	0 = 0 0 0 0	START OF RAM
	RAMEND	EQU	$0 \equiv 0.7 FF$	ENE OF RAM 2K REQUIRED
	AMPSTR	EQU	0 Ξ 98	24 BYTES
	PHSSTR	EQU	$0 \equiv 80$	24 BYTES
	STARTC	EQU	0 = 80	24 BYTES
	STARTS	EQU	0=C8	24 BYTES
	we		~ ₆₀ ~ 4	

DATA ** DATA IS ** USED WH ** COLLEC DPSHT	EQU 5 BEGINN HEN 4 P1 FION ARE EQU	0=0200 NING OF DATA IS/CYC ARE S EA. DPSHT ANI DATA+384	1536 BYTES ENDS AT 07FF56STACKING AREA. ONLY THE FIRST 96 BYTES ARE **TACKED THE REMAINDER IS USED AS A DATATACKED THE REMAINDER IS USED AS A DATATOP OF DATA STACK USED WITH 4,16 PTS/CYC
** PERIOD ** FOR MIN E0 CC0 E1 CC1 E2 CC2 E3 CC3 E4 CC4	TO FTSC 930 KF EQU EQU EQU EQU	CYC AND ACC I IZ CPU CLOCK D=60 0=10 0=10 0=10 0=10 0=10 0=10 0=10 0=10 0=10 0=10 0=20	WORD SIZE MAP ** * 6 LONG PERIOD LIMIT * 1.0 (E.G. 1.0E6 MILLISEC) * 1 64 PTS/CYC * 8.0 12.5HZ OR BOMS * 1 16 PTS/CYC * 1.0 100HZ * 0 4 PTS/CYC * 1.0 SHORT PERIOD LIMIT * 1.0 SHORT PERIOD LIMIT * 1.2 TO 8 BIT ADC CUTOFF * 2.0 50HZ OR 20MS
	ORG	BEGIN	
	9ML 9ML 9ML 9ML	MASTER MASTER MASTER RESETS	INTP * SWI * PESET AND INTERRUPT VECTORS NMI * RESET *
** TABLE U RUNTAB	JSED BY JMP JMP JMP JMP JMP JMP JMP JMP	ROUTINE FUN OSCDIS ATPONE SINCOS CHARID ATPEVO PRIEVO MAXSGN ATPALL PRIALL VOLIMI	EACH ROUTINE CORPESPONDS TO A KEY NO. ** RUNG DISPLAY DATA ON SCOPE RUN1 ACQUIRE,TRANS,PRINT ONE HARMONIC RUN2 SIN AND COS TRANSFORM ROUTINE RUN3 DUMP DATA ON CHART PAPER RUN4 ACQUIRE,TRANS,PRINT EVERY OTHER HARMONIC RUN5 PRINT EVERY OTHER HARMONIC RUN6 FIND MAXIMUM SIGNAL RUN7 ACQUIRE,TRANS,PRINT ALL HARMONIC RUN8 PRINT ALL HARMONICS RUN9 MAKES DEVICE A VOLT METEP
RESETS	LDS LDX STX	(STACKP 10=FFF4 PIAA4	RESET STACK POINTER TO PROGRAM STACK LOCATION * SET TIMER PIA
INZSYS	STX CLRB ERA LDAE	PIAB4 INZS1 (01	B FLAG SET, RESULTS IN BRANCH TO SYSTEM B FLAG SET, PREVENTS BRANCH TO SYSTEM
INZS1	CLR CLR CLR CLR CLR CLR CLR CLR LDX STX LDX STX LDX STX LDX	CPIAA1 CPIA61 CPIA62 CPIA62 CPIA63 CPIA63 CPIA65 CPIA65 I0ECCF4 PIA63 I0E0FF4 PIA63 PIA65 I0E0FF4	 * SET KEYPAD PIA PA6-PA7 ARE OUTFUTS * PA0-PA5 ARE INPUTS FOR COLUMNS * PB0-PB3 ARE OUTPUTS FOR ROWS * PB5-PB7 ARE INPUTS FOR MODE SWITCHES * SET ADC PIA * PA0-PA4 ARE OUTPUTS
	STX	PIABS	* PBO-PB7 ARE INFUTS

es.

INZS2	LDX STX STX LDX STX CLR TSTB ENE BRA JSR RTS	(0 =FFF4 PIAA1 PIAB1 PIAA2 (0=F7FC PIAB2 PIAB2 IN ZS2 SYSTST CLRDIS	57 * SET LDC FIAS * CB2 IS SET HIGH * * MAKE PB3 AN INPUT FOK PRINTER * ALL OTHERS ARE OUTPUTS * ALL OTHERS ARE OUTPUTS * ASSURES PRINTER POWER IS OFF. * CHECK B FLAG * IF EQU BRANCH TO SYSTEM TEST SYSTEM TEST CLEAR DISPLAY	
** SYSTEM SYSTST RAMKTN	TE ST BRA JSR JSR BNE LDAA STAA CLRB	CHECKS 2K M RAMCK TIMERT TEST83 SYSTST [O=CC PIAB1	AM AND 4K ROM, WRITES SQUAREWAVE INTO MEM ** ERANCH TO RAM CHECK DC TEST OF SAMPLE AND CYCLE PULSES * READ SWITCH 3 * IF SET REPEAT RAM AND PULSE TESTS * SET UP LCD AS XPPXX TO INDICATE PROM * PLACE PP IN DIGITS 3 AND 4	ş
PROMLP	LDX STX JSR INCB STAB LDX JSR BNE JSR LDAA STAA STAA STAA STAA STAA STAA STAA S	IBEGIN DATPT PROMOCK PIAA1 PIAA2 IGEFFG2 DELAY3 IG4 PROMLP LDMEM IGE88 PIAA1 PIAB1 IGEF8 PIAA2 IGE03 PIAB2 PWRON PRNT PRNT PWROFF INZVAR CKLOCP	BEGINNING CF ROM SAVE CREATE CHECK SUM ON 1K OF PROM INC 1K CHIF COJNTER PLACE CHECK SUM IN LOWEST 2 CIGITS ON LCD PLACE CHIP NO. IN 5TH DIGIT POSITICN ON LCD DELAY OF 900000 MACHINE CYCLES PER CALL IF CHIP NO. EQU 4 QUIT PROM CHECK LOAD MEMORY WITH SQUAREWAVE FOR TESTS * LOAD8.8.8.8.8 INTO LCD * TO TEST ALL LCD SEGMENTS * * * * * * * * * * * * * * * *	
** ROTATIN ** IF A B ** A IN 5 ** AND QU RAMCK SHFIST	NG BIT I AD LOCA TH DIGI ARTER K LDX LDAA STAA STAA STAA STAA CLR LDAA BNE INCA	RAM TEST TION IS FOUNT TTC INDICATE NO. IN 1ST (RAMSTR (OEDD PIAA1 PIAB1 (OEOD PIAA2 OO,X OO,X BACBIT	ROUTINE DOES NOT USE FAM STORAGE ** D FROGRAM HALTS AND LCD DISPLAYS ** E RAM, BIT NO.(1 - 8) IN 3RD DIG ** DIG (1 - 8). FORMAT A0502 ** LCCATION OF START OF CHECK * DISPLAY (AAAAA) ON LCD * * * * * * * * * * * * *	

	STAA	00 "X		
	CMPA	00,X	COMPARE ACC A WITH MEMORY LOCATION	
	BNE	BADBIT	IF NOT EQU BRANCH TO BAD BIT	
RAMLP	ASLA		令	
	ASL	00,X	* SHIFT BITS	
	CMPA	00 "X	CCIPARE ACC A WITH MEMORY LOCATION	
	ØNE	BADBIT	IF NOT EQU BRANCH TO BAD BIT	
	TSTA		* TEST FOR BIT IN 8 POSITION	
	8PL	RAMLP	* IF FOUND INC INDEX, TEST NEXT BYTE	
	INX			
	СРХ	(RAMENC+1	ADRS OF LAST BYTE TO BE TESTED +1	
	BNE	SHFIST	IF NOT LAST BYTE, TEST NEXT BYTE	
	JMP	RAMRTN	BFANCH SERVES FN SIMILAR TO RTS	
BADBIT	CLRB		\$	
TSTLP1	INCB		* DETERMINE BIT POSITION OF BAL EII	
	LSRA		\$	
	en e	TSTLP1	الله من المراجع (ال المراجع (المراجع (الم	
	STX	PIAA1	STORE INDEX IN LCD, MS BYTE GOES IN DIG 1,2	
	LDAA	[0=F4	* LS BYTE WENT INTO CONTROL PEG	
	STAA	CPIAA1	* RESTORE CONTROL REG	
	INC	PIAA1	INC DIG 1 TO CREATE 1/4 K NO.	
	STAB	PIAB1	* WRITE BIT NO. IN DIGITS 3 AND 4.	
RAMSLF	BRA	RAMSLF	HALT THE COMPUTER	
ha ha an an an an a				
** PROM	CHECK	CALCULATES	A CHECKSUM FOR 1K OF ROM **	
PROMCK	CLR	SRTCH1		
	CLR	SRTCH1+1		
	CLRA			
PRMLP	LUX	DAIPT		
	AUDA	X,00		
	INX			
	SIX	DATPI		
	LUX	SRICH1		
	LNX	55 55 55 AL A		
	SIX	SRICHL	ч ачелы рар залачы ФФИР ФИРАЦА. ГРРА	
	CPX	1020400	* CHECK FOR 1000IM IIME IMPOUGH LUCP	
	UNE	PKMLP	ιφ.	
	KI2			
44 TIMER	SAMPLE	AND CYCLE PI	HIGE TEST TESTS PATTA OF SAMPLE/LYCLE FULSES	首的
44 FOR 6	4. 16.	AND & ETS PER	CYCLE DISPLAYS HE WHEN WATTING FOR CYCLE	台灣
32 1119 44		AND 4 113 TCI	LATITNE END SET DE CAMPLE DIN SES, ETSPLAAS HA	贫禽
AA AND H	AI TS PR	CGRAM TE RAT	TO OF SAMPLE TO CALLE PULSES IS IN FEROR	* *
TIMERI	1044	10:25	PERIAD CAFE, 2,5	
191101/1	CLRA	10262	PETIND EXPANENT FA MSEC	
	828	STEPER	STARE PERIOD SET COUNTERS	
	108	125	SET RATIO SAMP/CVC &1 FOR THIS PERIOD	
	858	PATTOT	DE RATIO SENTIONO VI NON THIS VERIOU	
		10=40	PETTAD CAFE, 4.8	
		()=40	DESTAN EXP. 24	
	PCB BCB	STRPFP	STORF PERTON SET COUNTERS	
	LOX	197	SET RATTO AS AROVE	
	BSR	RATTOT	DC RATTO TEST	
	LNAA	10=20	PERIOD COFF. 2.0	
	TAR	u u _{co} u u u	PFRION FXP F2 5H7	
	ese	STEPER	STORE PEFTOD	
	LOX	[385	SET RATIO	
	ESR	RATTOT	DO RATIO TEST	
	RTS	· · · · · · · · · · · · · · · · · · ·	ւթ տր ուլու էջի ԿՄ - Մետ եսք է	

** STORES PERIOD AND SET PRE ANI POST COUNTERS ** STRPER STAA PIAA4 SET PERIOD COFF.

ويشتع فيرجد ك		·	www
	STAB	PIA84	SET PERIOD EXP. 59
	JSK RTS	PROSET	SET PRE AND POST COUNTERS AND PIS/CYC
** TEST	OF RATIO	OF SAMPLE	TO CYCLE PULSES **
RATIOT	STX	SRTCH6	STORE IDEAL RATIO NO.
	JSR	CLRDIS	CLEAR LCD DISPLAY
	LDX	(0000	SET RATIO COUNTER TO ZERO
	LDAB	PIAB4	CLEAR CYCLE PULSE BY READING PIA
	LDAB	PIAB5	CLEAR SAMPLE PULSE
	LDAB	(0386	* WAITING FOR CYCLE PULSE
	STAB	PIAA1	* PUT HE ON LCD
TTLP1	LDAA	CPIA84	* WAIT FOR CYCLE PULSE
	EPL	TTLP1	举
	LDAB	PIAB4	CLEAR CYCLE PULSE
	INC	PIAA1	PUT H7 ON LCD. WAITING FOR SET OF SAMPLE PULSES
TTLP2	LDAA	CPIA85	WAIT FOR SAMPLE PULSE
	BPL	TTLP2	
	LDAB	PIAB5	CLEAR SAMPLE PULSE
	INX		INC RATIO COUNTER
	LDAA	CPIA84	* LOOP BACK UNTIL CYCLE PULSE IS FOUND
	BPL	TTLP2	ä-
	СРХ	SR 1CH6	COMPARE RATIO COUNT WITH IDEAL VALUE
	8E Q	TTOK	IF EQUAL RETURN
	INC	PIAA1	PUT H8 ON LCD TO INDICATE RATIO EFROR
TTHALT	BRA	TTHALT	
TTOK	JSR	CLEDIS	CLEAR LCD
	RTS		

** LOAD	MEMORY	WITH +5,-5 VO	T SQUAREWAVE FOR TEST **	
** SINGL	E CHNL	PATTERN IS 2	HIGH.8 LOW,8 H.8 L.ETC FOR 64 PTS **	
LOMEM	LDX	[1536	NC. BYTES TO BE CLEARED	
	STX	SRTCH1		
	LDX	(DATA	START OF SECTION TO BE CLEARED	
	JSR	CLEM2	CLEAR MEMORY	
	LDX	(DATA	DEFINE STARTING ADRS	
	LDAB	(12	FCN FIRST PARTIAL CYCLE	
	er a	LDM2	START PARTIAL CYCLE	
LDM1	LDAB	[48	6CH*8PTS=48 SET COUNTER FOR 8 +5V POINTS	
LDM2	LDAA	[0=7F	+5 VOLTS	
	STAA	00 • X	LCAD VALUE IN MEMORY	
	CPX	(DATA+1532	CCMPARE WITH LAST LOCATION	
	BEQ	LDMOUT	IF EQU RTS	
	JSR	INX4	SELECT NEXT LOCATION (INX 4 TIMES)	
	DECB		DEC COUNTER	
	ENE	LDM2	IF NOT O STORE ONE MORE +5V VALUE	
	LDAA	10 <u>=</u> 8 c	~5V	
	LDAB	(48	SET COUNTER FOR 8 -5V POINTS	
LDM3	STAA	X • 0 0	STORE -5V VALUE	
	JSR	INX4	SELECT NEXT VALUE	
	DECB		DEC COUNTER	
	en e	LDM3	IF NOT O STORE ON MORE -5V VALUE	
	BRA	LDM1 DO	NEXT +5 CYCLE	
LDMOUT	RTS			

** INITIA	LIZE V	ARIAELES		喻 會						
INZVAR	LDAA	(0Ξ9C	NO. 0	F 8'	YTES	T D	8E	CLEA	RED	
	LDX	(OΞ0050	START	CF	SECI	ION	TO	BE	CLEA	RED

	JSR INC INC LDAA STAA JSR LDAA STAA RTS	CLRMEM HARM10 HRMNIC NCYCLE+1 [4 ROTACC PRDSET [0=06 NCHPF	CLEAR MEMORY SET ARCTAN FN ACCURACY SET PTS/CYC AND PRE AND POST * * SET NG. CF CHANNELS OPERATE	60 COUNTERS D ON
** LOOK F KEYQ	OR ANY F CLRA STAA LDAA COMA ANDA RTS	PRESSED KEY PIAB3 PIAA3 (0=3F	IF FOUND ACC A IS A NONZERO V 2 (MACHINE CYCLES) 5 4 2 2 5	ALUE **
<pre>** DELAY ** DELAY DELAY1 DELAY3 DELAY2 DLYLP1</pre>	ROUTINE EQ - N(LDX STX DEC BNE FTS DEC EEQ ERA RTS	D. CYC.=62+(COE1A62 SRTCH2 SRTCH2 DLYLP1 SRTCH3 DELAY2 DLYLP1	SRTCH3-1)*14+(SRTCH2-2)*3580 * PRESET DELAY 87278 CYCLES	冬草 .
** CHECKS FELESE	FOR REL	EASE OF IRES	SSEC KEY 🏁	
RELLP1	STAA LDAA COMA ANDA ENE BSR RTS	PIAB3 PIAA3 (0=3F RELLP1 DELAY1	ROW COLUMN About 90 Millisec delay fo	R KEY DEBOUNCE
₩₩ SOUNDS BEEP	BEEPEF LDAA STAA LDX BSR LDAA STAA RTS	FOR 8518 CY [0=FC CPIAB3 [0=0462 DELAY3 [0=F4 CPIAE3	CLES ** * BRING LINE CB2 HIGH FOR BEE * * DELAY * * BRING CB2 LOW FOR BEEPER OF	PER

** ACTIVATE ONE ROW ON KEYPAD, TEST COLUMNS FOR RESPONSE **
LDTST STAA PIAB3 ACTIVATE ROW
LDAA PIAA3 READ COLUMN
INCB
COMA
ANDA [0E3F
RTS

** INTERPR	ET PRE	SSED KEY	会会
INTP	ASL 9		
	ASLB		
	ASLB		
	ØSR	DELAY1	
	DECB		
	LDX	(0=F901	
	STX	SR TCH2	
L00P1	INC	SR TCH2	
	6E Q	ERP	
	INCB		
	CMPA	SRTCH3	
	eeq	END	
	ASL	SRTCH3	
	8r a	LOCP1	
ERR	NOP		
	BR A	RWSLCT	
END	BSR	BEEP	
	TSTB		
	RTS		

** MASTER	FOUTINE	FOR SC	ANNING	KEYPAD	齿铃
SCNKEY	BSR	RELESE			
RWSLCT	LDAB	(OEFF			
	LDAA	3 Q Ξ Q Δ			
	BSR	LDIST			
	egt	INTP			
	LDAA	10Ξ0D			
	BSR	LDTST			
	eg t	INTP			
	LDAA	(0Ξ08			
	BSR	LDTST			
	BGT	INTP			
:	LDAA	(0207			
	esr	LDIST			
	egr	INTP			
	BR A	RWSLCT			
	RTS				

会会	CL	EA	RL	.IG	U:	ID	CR	۷	ST	AL	D	ľ	51	: L A	1	Y	岺	蓉
CLR	DI	S		10) A (Q.	ſ	0	ΞF	F								
				ST	° A 1	A	P	I	AA	1								
				SI	° A I	Д	Р	1	AB	4								
				LC) A (Ą	C	0	=0	۴								

	STAA LDAA ANDA STAA RTS	PIAA2 PIAB2 [O=FC PIAB2	* SAVE PRI *	NTER CONTROLS	MAY 14 78	
₩ DISPLAY LCD1	YSAN LDAB ANDB ANDA ABA STAA STAA ANDA RTS	0. ON LSD OF PIAA1 [0=FC [0=0F PIAA1 [0=0F	LCC WITHOUT	AFFECTING OTH	EP VALUES **	
** CONVERT TSTCD SCLP	KEY CMPB BNE LDAA INX DEC RTS	CODE NO. TC DO.X SCLP SRTCH3 SRTCH3	DECIPAL VALU CCPPARE KE * IF THEY * INTO ACC PCINT INDE * DEC COUN	E 0-9 ** YCODE WITH TAB ARE EQUAL LOAD A AS BCC VALU X TO NEXT CODE TER	LE CODE CCUNTER E	
** KEYPAD Conv1	CODE CON CON CON CON CON CON CON CON	CONVERSION T 0 ± 0A 0 ± 09 0 ± 08 0 ± 12 0 ± 12 0 ± 11 0 ± 10 0 ± 14 0 ± 19 0 ± 18 0 ± 01	ABLE ** 9 8 7 6 5 4 3 2 1 0			
** MASTER NCODE NCLP	POUTI LDAA STAA LDAA LDX JSR	NE FOR KEY (10:209 SRTCH3 10:288 10:288 10:0001 TSTCD	CDE TO DECIN	AL CONVERSION	** ABLE	
ENDL	BMI BRA RTS	EN DL NCLP				

会会	SELECTS	5 1 OF	10 SUBROUTIN	ES	1	ſΗA	T	MAY	8E	CALLED	旁蛮	
RUN		8SR	CLEDIS									
		BSR	SCNKEY	参		. O C	Κ	FOR	NDe	, ENTER	ED ON	KEYPAD
		8SR	NCODE	会								
		CMPA	[0 <u>=</u> 98	II	20	A	NU	MBEF	7 I S	S NOT F	OUND	PETURN
		8E Q	RNOUT									
		B SR	LC01		ſ)IS	FL	AY (JN I	.00		
		LDX	TRUNTAR-3		Į.	2 U N	ĩ	ARL	- -	3		

\$

RNLP	ĪNX			52
	INX			,,
	INX			
	DECA		ACC A IS COUNTER SELECTOR	
	BPL	RNLP	A 4) 4	
	JSK	VU • X	CALL SELECTED RUN ROUTINE	
RNOUT	LDAB	10 = F 4	* TURN OFF OPEN REGISTER INDICATOR	Ĩ.
	STAB	CPIAA2	旁	
	RTS			

** CONTRO	L KEY	JUMP TABLE	岑				
CKTAB	JMP	RUNB		0	EQUIVALENT	KEY	NO.
	JMP	HRMSLT		4			
	JMP	MEM		2			
	JMP	RUN		3			
	JMP	NCHNLS		4			
	JMP	PER		5			
	JMP	CYC		6			
	JMP	CDUM		7			
	JMP	AMP		8			
	JMP	PHS		9			

CDUM RTS

** THIS	IS THE	MASTER CONTROL	LCOP FOR THE PROGRAM ##
MASTER	LDS	ISTACKP	SET STACK POINTER TO PROGRAM STACK LOCATION
CONKEY	JSR	INZSYS	
CKLOOP	JSR	SCNKEY	
	JSR	NCCDE	
	CMPA	(O 288	
	BNE	CKLOOP	
	SUBB	C O Ξ O 3	
	JSR	NCODE	
	CMPA	(0588	
	8E Q	CKLOCP	
	LDAB	COEFC	* TUPN ON CPEN REGISTER INDICATOR
	STAB	CPIAA2	毕
	LDX	[CKTAB-3	CONTROL KEY JUMP TABLE -3
	esr	RNLP	
	BRA	CKLOOP	

桧 徐	DISPLAY	S	PERI	DD	FORMA	1	49	(8	ß	1.2	3	3)	8	823 842	SLANK	会会
DIS	SPER	10	ΑΑ (PI	AA4											
		ST	'AA	PI	AB1											
		1.0	AA	ΡI	AB4											
		AN	DA	0)	=7 Ø											
		65	RA													
		15	RA													
		65	RA													
		65	RA													
		AC	DA	٤O	=F0											
		Sĩ	AΑ	ΡI	AA1											
		LC	ΙΔΔ	٥)	E4F											
		Sĭ	AA	ΡI	SAA											
		RI	'S													

FINES	STDIG1 AND	STDIG2	-	STORE	DIGITS	1	AND	2	教会
LDAB	(0=0F								
ANDB	0 • X								
ØSR	SHFL4								
BRA	SAME								
LDAB	(O EF G								
ANOB	0 ₀ X								
ABA									
STAA	0 , X								
JSR	SCNKEY								
RTS									
	INES LDAB ANDB BSR BRA LDAB ANDB ABA STAA JSR RTS	INESSTDIG1ANDLDABIOEOFANDB0.0XBSRSHFL4BRASAMELDABIOEFOANDB0.0XABASTAAJSRSCNKEYRTS	INES STDIG1 AND STDIG2 LDAB [0=0F ANDB 0.X BSR SHFL4 BRA SAME LDAB [0=F0 ANDB 0.X ABA STAA 0.X JSR SCNKEY RTS	INES STDIG1 AND STDIG2 - LDAB [0=0F ANDB 0.x BSR SHFL4 BRA SAME LDAB [0=F0 ANDB 0.x ABA STAA 0.x JSR SCNKEY RTS	INES STDIG1 AND STDIG2 - STORE LDAB [0=0F ANDB 0.x BSR SHFL4 BRA SAME LDAB [0=F0 ANDB 0.x ABA STAA 0.x JSR SCNKEY RTS	INES STDIG1 AND STDIG2 - STORE DIGITS LDAB [0=0F ANDB 0.X BSR SHFL4 BRA SAME LDAB [0=F0 ANDB 0.X ABA STAA 0.X JSR SCNKEY RTS	INES STDIG1 AND STDIG2 - STORE DIGITS 1 LDAB [0=0F ANDB 0.X BSR SHFL4 BRA SAME LDAB [0=F0 ANDB 0.X ABA STAA 0.X JSR SCNKEY RTS	INES STDIG1 AND STDIG2 - STORE DIGITS 1 AND LDAB [0=0F ANDB 0.X BSR SHFL4 BRA SAME LDAB [0=F0 ANDB 0.X ABA STAA 0.X JSR SCNKEY RTS	INES STDIG1 AND STDIG2 - STORE DIGITS 1 AND 2 LDAB [0=0F ANDB 0.X BSR SHFL4 BRA SAME LDAB [0=F0 ANDB 0.X ABA STAA 0.X JSR SCNKEY RTS

会 会	LOAD	PERIOD	DISPLAYED	0N	LCD	TO	TIMER	禽禽
LDF	PER	LDAA	PIAB1					
		STAA	PIAA4					
		LDAB	PIA84					
		ANDB	[0=8F					
		LDAA	PIAA1					
		ANDA	(0=07					
		JSR	SHFL4					
		ABA						
		STAA	PIA84					
LDF	×1	B SR	DISPER					
		RTS						

** ALLOWS PER	ENTERIN JSR BSR JSR BEQ JSR LDX JSR BEQ JSR LDX JSR BEQ JSR LDX JSR BEQ SR BEQ SR BSR BSR BSR	NG ANC EXAMI CLEDIS DISPER SCNKEY TOCK NCCDE [PIAB1 STCIG1 TOCK NCCDE [PIAB1 STDIG2 TOCK NCCDE [PIAB1 STDIG2 TOCK NCCDE [PIAA1 STCIG2 TOCK [0:05 TOCK LDPER PRDSET DISPER	NATION CLEAF SET P	OF PERIOD LCD	** PRE AND POST	COUNTERS
IUCK	JSR RTS	UTSAFK				
PRDSET	JSR JSR LDAA	PTSSET PTSCON PTSCYC	SELEC SET * CON	T NO. PTS/C Pts/Cyc con Vert to bcd	YC TROL BITS ON	TIMER BOAPC

JSR	BNBCC2	零	
STAA RTS	PTCY10	举	

SHFL4 ASLA ASLA ASLA ASLA RTS

** DISPLAY ON LCD NO. OF CYCLES TO BE AVERAGED ** DISCYC LDAB CYCAVG JSR DISDG2 RTS

** MANA	GES DISPL	AY ANC	ENTRY	CF	NO.	OF	CYCLES	TO	BE	AVERAGED	资告
CYC	BSR	DISCYC									
	JSR	SCNKEY									
	e e Q	LASTD1									
STROV1	JSR	NCCDE									
	LDX	(PIA61									
	LDAB	(O EFF									
	STAB	0 . X									
	JSR	STCIG1									
	ee q	LASTD1									
	JSR	NCCDE									
	LDX	(PIA81									
	JSR	STCIG2									
	ee Q	LASTD1									
	BRA	STROV1									
LASTD1	LDAA	PIA81									
	STAA	CYCAVG									
	esr	DISCYC									
	BSR	SETCAT									
	RTS										

&& SE	TN	C.	OF	С۷С	LES	τo	8E	ΑV	ERAGE	ED	IN	eim	ARY	/ 答答					
SETCH	IT	(CLRE	3															
		ų,	DA4	4	CYC	AVG													
		(CMP/	4	(O Ξ	15													
		E	3HI		ERRI	DR1													
		(CMPA	1	1 O Ξ) F													
		8	3LE		SKI	2													
			DAE	3	(O E	D A C													
		l	an d a	4	(O Ξ	0 F													
SKIP		1	4 B A																
		ĺ	3SR		SET	CN2													
			JSR		$C \ Y \ C$	DEC		1	CCCN	VER	T A	10.	OF	CYC	LES	٢O	BCD	AND	CISPLAY
		li s	2 T S																
ERROR	1	1	_DA{	3	103	31													
		5	STAE	3	PIA	31													
		F	2 T S																
SETCN2	IDX	10=0001																	
---------	------	-----------																	
0610146	STX	NCAULE																	
SLOOP	DECA	1101062																	
	emi	RTN																	
	ASL	NCYCLE +1																	
	FOL	NCYCLE																	
	BRA	SLCOP																	
RTN	RTS																		

** DISPLAY	AMPLIT	UDE	ANC	FHAS	SE	索 会		
AMP	LDX	CAMP	STR					
	STX	SRTC	:H1					
	ERA	AP1						
PHS	LDX	(PHS	STR					
	STX	SRIC	CH1					
AP1	JSR	CLAS	IS					
	JSR	SCNK	ΈY					
	JSR	NCCD)E					
	CMPA	(O E E	38					
	ENE	AP2						
	STAA	PIAA	1					
	BRA	APOU	IT					
APZ	DECA							
	BMI	APOL	IT					
	CMPA	1 O Ξ C)5					
	BGT	APOL	J Ť					
	ASLA							
	ASLA							
	ADDA	SRIC	:H1+1					
	STAA	SRTO	CH1+1					
	ecc	AP3			*	ADDED	APRIL	22,78
	INC	SRTO	CH1		举			
AP3	LDX	SRTC	;H1					
	BSR	LCCC)IS					
APOUT	RTS							

** LOAD	LCC WITH	4 BYTES	POINTED	AT	6 Y	INDEX	索 索			
LCDDIS	LDAA	3 🔋 X								
	STAA	PIAA1								
	LDAA	02,X								
	STAA	PIAB1								
	LDAA	01.X								
	STAA	PIAA2								
	LDAA	00,X								
	ANDA	(O E O 3	令	SAVE	PR	INTER	CONTPOLS	ΜΔΥ	14	78
	LDAB	PIAB2	令			1				
	ANDB	(O EF C	¥							
	ASA		垫							
	STAA	PIAB2								
	RTS									

₩ ₩	MANA	GES P	AFAME	TERS	Α (CCESSE	D	THROUG	ЗH	MEM	KEY	資務
MEM		JS	R	CLRDI	S							
		JS	R	SCNKE	ΞY	2	岑					
		JS	R	NCODE		4	終	DECOD		KEY		
		AN	DA	(0 Ξ0 P								
		CM	ρα	[0 Ξ 0 1	3							
		AN	r	M.11								

MJ1	JMP CMPA	DISPIC [0=01	DISPLAY PTS/CYC	67
	BNE	MJ2 DISPHC	DISDLAN DHASE CORRECTION	
MJ2	CMPA	(0 <u>=</u> 02	Pagieni i Luge ogle for for for	
	9NE JMP	MJ3 STATNO		
MJ3	CMPA	5 0 <u>=</u> 0 3		
	JMP	RUNNC		
MJ4	CMPA	[0=04		
	9NE JMP	MJ5 CROTAC	POULTINE TO SET POTATION ACCURACY	
MJ5	RTS		LOUTANE TO SET ROTTAGE HOUSEHOL	
88 0800 1 A	V BAT		As as	
DISPIC	JSR	CLFDIS	n na sea ann an sea ann an sea ann ann ann ann ann ann ann ann ann a	
	LDAA	PTCY 10		
	RTS	PLAAI	DISPLAY POINTS / CYCLE	
** DISPLA	Y STAT	ION NO. AND R	UN NO. FORMAT = (XX XX) **	
DOTINGIA	LDAB	NSTN	LCAD STATICN ND.	
	CLRA	DADA	ATEAULATE APP & THIS APP A DICUT OF	ንተለተዋለል
	ORAA	(050F	BLANK DIGIT NO 3	JINILON
	STAA	PIAB1	LOAD DIGITS 3 AND 4 INTO LCD	~~
	LDAA	PIAA2 NRUN	* DISPLAY RUN NO. ON DIGITS 1 AND 2	.00
	STAA	PIAA1	ф	
	812			
** DISPLA	YS NO.	OF CYCLES TO	BE AVERAGED IN BCD FORM **	
CYCDEC	LOX	NCYCLE	* CONVERT NCYCLE TO 5 DIGIT BCD VALU	JE
	CLR	D2 D3	UL IS LS BYTE CLEAR MS BYTE	
	JSR	BINBCD	CONVERT TO BCD	
	JSR LDAA	CLRDIS OUT1	CLEAR DISPLAY LS 2 DIGIIS	
	STAA	PIAA1	TO LCD 2 LS DIGITS	
	LDAA STAA	OUT2 PTAR1	NEXT 2 DIGITS	
	LDAA	CUT3	MS DIGIT	
	ST A A R T S	PIAA2	TC LCD	
*****	OSINE /	AND SINE CONS	TANT TABLE *****	

* TABLE STRUCTURE - 80 2 BYTE CONSTANTS, WITH OVERLAPPING SETS OF 64 CCS * * AND 64 SIN 2 BYTE CONSTANTS.

COSTOP	CON	UE7F, 0EFF, 0E7F, 0E61, 0E7D, 0E89, 0E7A, 0E7C
	CON	0=76,0=41,0=70,0=E2,0=6A,0=6D,0=62,0=F1
	CON	0=5A,0=82,0=51,0=33,0=47,0=1C,0=3C,0=56
	CON	0=30,0=F8,0=25,0=28,0=18,0=F9,0=0C,0=8C
SINTOP	CON	0 = 00,0 = 00,0 = F3,0 = 74,0 = E7,0 = 07,0 = DA,0 = D8

	CON	0 = CF,0 = 0 5,0 = C3,0 = AA,0 = 88,0 = E4,0 = AE,0 = CD
	CUN	0=A5,0=7E,0=9D,0=0F,0=95,0=93,0=8F,0=1E
	CON	0=89,0=8F,(=85,0=84,0=82,0=77,0=80,0=9F
	CON	0=80,0=01,0=80,0=9F,0=82,0=77.0=85,0=84
	CON	0=89,0=8F,0=8F,0=1E,0=95,0=93,0=9D,0=0F
	CON	0=A5,0=7E,0=AE,0=CD,0=B8,0=E4,0=C3,0=AA
	CON	0=CF,0=05,0=DA,0=D8,0=E7,0=07,0=F3,0=74
	CON	0 = 00,0 = 00,0 = 0C,0 = 8C,0 = 18,0 = F9,0 = 25,0 = 28
	CON	0 = 30,0 = FB,0 = 3C,0 = 56,0 = 47,0 = 1C,0 = 51,0 = 33
	CƏN	0=5A,0=82,0=62,0=F1,0=(A,0=6D,0=70,0=E2
	CON	0 = 76,0 = 41,0 = 7A,0 = 7C,0 = 7D,0 = 89
COSBOT	CON	0 = 7 F , 0 = 61
	CON	0 = 7F, 0 = FF, 0 = 7F, 0 = 61, 0 = 7D, 0 = 89, 0 = 7A, 0 = 7C
	CON	0=76,0=41,0=70,0=E2,0=€A,0=6D,0=62,0=F1
	CON	0 = 5A , 0 = 8 2, 0 = 51, 0 = 33, 0 = 47, 0 = 1C, 0 = 3C, 0 = 56
	CON	0=30,0=F8,0=25,0=28,0=18,0=F9
SINBOT	CON	$0 \equiv 0C, 0 \equiv 8C$

** MASTER	ROUTINE	FOR DOING	SINE AND COSINE TRANSFORMS **
SINCOS	LDX	(DATA	START OF STORAGE APEA FOR STACKEE SIGNALS
	STX	DATPT	PCINTER TO SIGNALS
	LOX	(STARTC	START OF MEM SECTION TO BE CLEARED
	LDAA	(0=30	NC. OF BYTES TO BE CLEARED IS 48
	JSR	CLRMEM	CLEAR STORAGE AREA FOR TRANS RESULTS
	LDX	(STARTC	* DEF. STORAGE AREA FOR
	STX	STORAR	* COS TRANS RESULTS
	LOX	[COSTOP	<u>چ</u>
	STX	TAELEP	* DEFINE TOP AND BOTTOM
	LDX	(COSBOT	* OF TRANS CON TABLE
	STX	TAELEB	* FOR COS TRANS
	esr	TRNSFM	DO COS TRANS
	LOX	[DATA	
	STX	DATPT	
	LDX	(STARTS	* CEF. STORAGE AREA FOR
	STX	STORAR	* SIN TPANS RESULTS
	LDX	ISINTOP	\$
	STX	TAELEP	SANE
	LOX	(SINBOT	* FOR SIN TRANS
	STX	TABLEB	禄
	BSR	TRNSFM	DC SIN TRANS
	JSR	PHSCCR	CALCULATE PHASE CORRECTION
	CLR	DIVTEN	SET DIVIDE BY 10 FLAG TO ZERO
	JSR	TESTB1	TEST SWITCH 1
	en e	RECT	IF ON SKIP RECT TO POLAR CONVERSION
	JSR	POLAR	CONVERT TO POLAR COORDINATES
	INC	DIVTEN	SET DIVIDE BY TEN FLAG TO 1
RECT	LDX	[PHSSTP	举
	STX	BCCOUT	4
	LDX	[STARTS	举
	STX	BNIN	祭
	JSR	CNVRT	* BINARY TO BCD FOR SINE
	CLR	DIVTEN	CLEAR DIVICE BY 10 FLAG
	LOX	CAMPSTE	* IDENTIFY OUTPUTS AND INPUTS
	STX	BCCOUT	P
	LDX	[STARTC	\$
	STX	BNIN	举
	JSR	CNVRT	* BINARY TO BOD FOR COSINE
	JSR	MPRINT	索
NOPR	RTS		

** PERFORM	15 SINE	OR CCSINE	TRANSI	FOR	4 44	5						
TENSEM	JSK	CCNIRL	SET	COI	JNT	ER IN	ICREM	1 61	AT (CNTINC)	ANC	SET	CNLPPI
	8SR	LOAD	TAEI	LEP	TO	ACC		嶚	BACK SET			
	SUBB	CNTINC						ᇢ	TABLE			
	SBCA	(O E O O						局	POINTER			
	esr	STORE	ACC	τo	TAE	BLEP		旁				
TRNLP	BSR	LOAD	TAE	LEP	TC	ACC	學		ADVANCE			
	ADDB	CNTINC					岺		TABLE			
	ADCA	(0=00					魯		POINTER			
	8SR	STORE	ACC	TO	TAE	BLEP	敞					
	LDAA	TABLEB						 #	RESET			
	LDAB	TABLE8+1						爳	CONSTANT			
	SUBB	TA ELEP+1						容	POINTER			
	SBCA	TAELEP						蓉	IF			
	ecs	TRN1						导	GREATER			
	BRA	TRN2						餋	THAN			
TRN1	BSR	LOAD		袋	RES	SET		ኣ	END OF			
	SUBB	[0=80	L28	拳	TA	BLF		畲	TABLE			
	SBCA	rn=00		会	POT	INTER	,	樽				
	ASR	STORE		蓉	1.64	a • e • es• • •	•	騄				
TRN2	.158	SETMIT	SFT	110	ANT	Y MIT	TTPI	۷				
112116	DEC	CNIPPT	v# 6≤ 1	01	1489		, • aa • 6	59a 1				
	ANE	TENIP										
	JSR	NORM	NCF	ΜΔΙ	775	TRAN		= 51	ITS FOR 64	.16.1	L PT	SICYC
	RTS	1 y cor 1 ' f 1	10 2011	1 1 1 1 1 1 1 1 1	1979 En bas	8 - 5 m J 8	1.w 716	"	- <u> </u>	1443.		
TRN2	SBCA BSR JSR DEC BNE JSR RTS	LUEDU STORE SETMLT CNLPPT TRNLP NORM	SET	* UP MAL	PCI ANT IZE	NTER MUL TRAN	TIPI	# _ ¥ E SL	ILTS FOR 64	9169 ¹	4 PT:	S/CYC

** SETS ** FROM CCNTRL	SIZE FOR SINE AND LDAA STAA JSR LDAA LDAB	COUNTER INCREMENT COSINE TABLE. PTSCYC CNLPPT HRMCK PTSCYC fD=40	FOR U	SE IN	SELECTING	CONSTANTS	倉貴
LP1	LSRA LSRB CMPA BNE LDAA	(0E02 LP1 HEMNIC					
LP2	CMP8 8EQ ASLA LSRB BRA	(0=01 OUT					
OUT	STAA RTS	CNTINC					

** LOAD	POINTER	INTO A	CC A	AND	8	旁资
LOAD	LDAA	TAELE	P			
	LDAB	TAELE	P + 1			
	RTS					

** STORES ACC A AND B INTO POINTER ** STOPE STAA TABLEP STAB TABLEP+1 RTS

** SETS SETMLT	UP AND LDX STX LDX LDX	MULTIPLIES STGRAR STRPT TAELEP 00 • X	DATA FOR 6 CHANNELS ** RESET POINTER TO TRANSFORM STACK TC POINT AT CF 1 SIN OR COS. * LOAD ADRS OF CONSTANT * LOAD CONSTANT INTO MULTIPLICAND FOSITION
CHANLP	STX LDAA STAA ESR JSR BSR	XX [0=06 CHCNT DATSET MULT16 EXPSHF	<pre>* (NOT DESTROYED AFTER MULTIPLY) * SET CHANNEL COUNTER *</pre>
	BSR DEC ENE RTS	AD TF SK CH CN T CH AN LP	* DEC CHANNEL COUNTER

*** SU3ROUTINE ADTFSK LDX	ADD TC STPPT	TRANSFORM STACK *** LCAD STORAGE AREA POINTER
LDAA	U+3	
ADDA	3 , X	
STAA	3 , X	
LDAA	U+2	
ADCA	2 v X	
STAA	2 9 X	
LDAA	U+1	
ADCA	1 . X	
STAA	1 . X	
LDAA	U	
ADCA	0 _v X	
STAA	Q,X	
JSR	INX4	SET ADRS OF STORAGE AREA POINTER TO NEXT CH
STX	STRPT	
RTS		

** SET	UP	DATA	VALUE FOF	MULTIPLY **
DATSET		LDX	DATPT	LCAD ADRS OF STACKED DATA
		LDX	00,X	* PUT DATA FROM CH N (MS 16 BITS) INTO
		STX	Y	* MULTIPLIER POSITION FOR SUB MULT16
		LDX	DATPT	RELOAD ADRS OF STACKED DATA
		JSR	IN X4	POINT INDEX AT DATA FOR NEXT CH (N+1)
		STX	DATPT	STORE ADRS OF NEXT DATA VALUE
		RTS		

** EXPAND PRODUCT OF MULTIPLY BY SHIFTING TO RIGHT ** ** THIS MAKES ROOM FOR STACKING 64 VALUES 兽兽 EXPSHF LDAB (0205 SHFLP ASR U FOR U+1 ROR U+2 ROR U+3 DE C B ENE SHFLP RTS ** ROUTINE CLEARS UNLIMITED SECTIONS OF MEM ** ** INDEX MUST CONTAIN STARTING ADRS .
** SRTCH1 MUST BE NO. OF BYTES TO BE CLEARED. STX DATPT CLRM2 CLRMLP LDX DATPT CLR X.00 INX STX DATPT LDX SRTCH1

DEX STX SRTCH1 ENE CLRMLP RTS

** INDEX MUST CONTAIN STARTING ADRS / ACC A MUST CONTAIN NG. CF BYTES TO * ** BE CLEARED. CLRMEM CLR 00,X

INX DECA DEC COUNTER BNE CLEMEM LOOP RTS

** SELECTS MAXIMUM POINTS PER CYCLE POSSIBLE **

LDAA	PIAA4	*
CMPA	C O E O A	参
BCS	PTSERR	* LEADING ZERO FOUND ERROR
LDAA	(EO	\$
LDAB	(CCO	*
ØSR	COMPAR	令
BMI	PTS64	*
BRA	PTSERR	* PERIOD TOO LARGE
LDAA	[64	
STAA	PTSCYC	举
LDAA	(E1	卷
LDAB	[CC1	冬
8SR	COMPAR	举
BWI	PTS16	祭
BRA	SETFL	* 64 PTS/CYC
LDAA	[16	舉
STAA	PTSCVC	- 移
LDAA	[E 2	參
LDAB	[CC2	冬
esr	COMPAR	<i>₽</i>
BMI	PTS4	奏
er a	STF12	* 16 PTS/CYC
LDAA	[4	*
STAA	PTSCYC	冬
LDAA	(E3	\$
LDAB	[C C 3	<i>ቅ</i>
	LDAA CMPA BCSAA BMA LDAA BMA LDAA BMA LDAA BMA LDAA BMA LDAA BMA LDAA BMA LDAA BMA LDAA LDAA LDAA LDAA LDAA LDAA	LDAA PIAA4 CMPA (0E0A BCS PISERR LDAA (E0 LDAB (CC0 BSR COMPAR BMI PIS64 BRA PISERR LDAA (64 STAA PISCYC LDAA (E1 LDAB (CC1 BSR COMPAR BMI PIS16 BRA SEIFL LDAA (16 STAA PISCYC LDAA (16 STAA PISCYC LDAA (E2 LDAB (CC2 BSR COMPAR BMI FIS4 BRA SIF12 LDAA (4 STAA PISCYC LDAA (E3 LDAB (CC3

		BSR	COMPAR	举
		BMI	PTSERR	* PERIOD TOO SMALL
** NEXT	6	LINES	SET UP FOR 1	6 PTS/CYC. THESE VALUES WILL BE USED IF **
** FLAG	12	IS CLE	AREC IE 8 8	IT ADC WORD SIZE IS USED **
STF12		LOX	(0=8060	128, 96 DEC OR 80, 60 HEX
		STX	DTFTCH	DTPTCH, PTCYCH
		LOX	[DPSHT+768	*
		STX	PSHBCT	* DEFINE BOTTOM OF DATA COLLECTION AREA
		LDX	[DATA+380	举
		STX	DATAB	* BOTTOM OF STACKING AREA
		LDAA	[16	
		CMPA	PTSCYC	
		BEQ	SETFL	IF PISCYC = 16 SKIP NEXT SECTION
* NEXT	SIX	LINES	FOF 4 PTS/C	YC WITH 8 BIT ADC WORDS *
		LDX	(O=2010	32, 24 DEC OR 20, 18 HEX
		STX	DTFTCH	CTPICH, PICYCH
		LDX	[DFSHT+192	부
		STX	PSHBCT	* DEFINE BOTTOM OF DATA COLLECTION AREA
		LDX	(DATA+92	奔
		STX	DATAB	BOTTOM CF STACKING AREA
SETFL		CLR	FLAG12	CLEAR FLAG FOR 8 BIT ADC WORDS
		LDAA	(E4	50HZ CHANGE OVER POINT
		LDAB	[CC4	
		esr	COMPAK	
		emi	ADC8	
		INC	FLAG12	SET FLAG12 FOR 12 BIT ADC WORD SIZE
ADC8		RTS		
PTSERR		LDA8	[0 <u>=</u> 83	DISFLAYS +3
		JSR	ERKOR	

** COMPARE	PERIOD	S ^{奏奏}	
COMPAR	STAA	EXPA	
	STAB	COEB	
•	LDAA	PIAB4	READ EXP
	ANDA	(O = 7 O	
	CMPA	EXPA	
	ehi	GTHAN	ACC > M
	BCS	LTHAN	ACC < M
	LDAA	PIAA4	READ CCEF
	СМРА	COEB	
	ehi	GTHAN	ACC > M
	BCS	LTHAN	ACC < M
	CLRA		* EQUAL
	RTS	·	
LTHAN	LDAA	10 <u>=</u> 80	* LESS THAN
	RTS		
GTHAN	LDAA	(0 <u>=</u> 0 1	* GREATER THAN
	RTS		

** NORM	VALIZE	TRANSFORM	RESULTS	FOF	640	16,)P	4 PO)	[NTS/C	VCLE	告告	
NORM	CLR	8										
	LDA	A PTSCYC	, w									
	CMP	A [0=40	辱									
	BEQ	NREND	物	64	PTS/	CYC	USED	I NOF	RMALIZ	ATICN	ACT	NEECED
NORMO	ASL	Α		¥ [DETERI	MINE	NO.	OF S	SHIFTS			
	emi	NO&M1		\$ P	VEEDE	о тс	NCR	MALI	ZE			

 ϵ_{2}

a.

				73
	NORM1	INCB ERA STAB	NORMO NOSHF	* TRANSFCRMED VALUES, * STORE NO. IN NOSHF.
			STORAR	LCAD ADPS OF STORAGE AREA FOR TRANSFORMED VALUES
	NLOOP1 NLOOP2	LDAB	NO SHF SHIFTL	LCAD NO. OF SHIFT COUNTER 4 BYTE TIMES 2 MULT.
		DECB	NI COP2	DEC NO. OF SHIFTS COUNTER
		JSR DECA	INX4	SET INDEX TO NEXT VALUE IN DATA SET DEC CHANNEL COUNTER
-pr	NREND	ene Pts	NLCOP1	
er.	SHIFTL	ASL	3 , X	
		ROL	2	
		ROL	0 • X	
		RTS		
	** CONVER CNVKT	T BINAR' LDAA	Y RESULTS TO	DISPLAYABLE FORM **
		STAA	CHCNT	
	CNVLP	ESR IST BEO	BCCCON DIVTEN Skirmv	TEST DIVID BY TEN FLAG
		JSR	MVDEC	MOVE DECIMAL PT.
	SKIPMV	JSR	INX4	POINT TO NEXT SET OF DECIMAL OUTFUT LOCATIONS
		LOX	BNIN	* POINT TO NEXT SET OF BINARY
		JSR	INX4	* INPUT LCCATIONS
		DEC	CHCNT	*
		EN E R T S	CNVLF	LOOP 6 TIMES
	44 MATU PI	THTTNE I	DREPARES ATM	AFY DATA FOR DISPLAY AS BOD VALUES **
	BCDCON	BSR	BCOPT1	DO PART 1
		BSR	BCCPT2	DO PART 2
	** PREPARI	ES BINAI	RY VALUE FOF	DISPLAY AS SIGNED 4 DIGIT BCD VALUE **
	BCDCO2	BSR	BCCP11	DO PART 1
		ESR	SHRLP	* SMTEL 4 RAIEZ IS RTIZ KTOWI
		LDAA	C O ≡ O F	* BLANK LEADING ZERO
		STAA	01,X SRICH2	* AND ALL DECIMALS
		STAA	00,X	* LOAD SIGN
		LDAA	02,X 10=F0	* BLANK SECOND ZERO IF PRESENT
		ENE	BCOUT	<i>₽</i>
		ORAA	(0=F0	每 8.
	BCOUT	STAA RTS	UC9A	FCRMAT (- XXXX)

. ' 5'

** CONVERT	S BINAR	Y DATA	TO BCD FOR DISPLAY (PART 1) **
BCDPT1	CLRB		NC MINUS SIGN
	LDX	BNIN	令
	LDAA	X * 20	* LOAD BINARY DATA, 4TH BYTE NOT USED
	STAA	D1	*LS BYTE
	LDAA	01,X	<i>B</i>
	STAA	D2	\$
	LDAA	00,X	令
	STAA	D3	*MS BYTE
	BPL	POSIT	TEST FOR NEG BINARY VALUE
	COM	D3	* NEGATE NEG BINARY VALUE
	COM	D2	举
	COM	D1	₩
	LDAB	(0Ξ02	SET NEGATIVE SIGN
POSIT	STAB	SRTCH2	SAVE FOR LATER
	JSR	BINBCC	BINARY TO ECD ROUTINE
	LDX	BCCOUT	
	LDAA	OUT1	* LSD
	STAA	03,X	STORE DECIMAL RESULTS
	LDAA	0012	举
	STAA	C2°X	降
	LDAA	OUT3	举
	STAA	01. ₂ X	₽-
	LDAA	(0 <u>=</u> 40	SET 3FD DECIMAL (X X.X X X)
	LDAB	OUT4	奉
	ANDB	(0 <u>=</u> 0F	举
	STAB	00,X	* MSD
	RTS		
** CONVERT	IS BINAR	Y DATA	TO BCD FOR DISPLAY (PAPT 2) **
BCDPT2	ENE	ELARG	* NO LEADING ZERO
	LDAB	01.X	*
	ANDB	(0 3F 0	*
	BNE	emed	* NEXT DIGIT IS NOT A ZERO - BRANCH
	LDAB	01,X	\$
	ANDB	10 E0 F	寮
	ene	NOZERO	* TEST FOR LEADING ZERO
	ORAB	[0 <u>=</u> 0F	* BLANK LEADING ZERO
	STAB	01,X	*
NOZERO	BRA	BSML	SMALLEST NO.
BLARG	8SR	SHR44	SHIFT RIGHT
	LSRA		SHIFT DECIMAL
8ME D	esr	SHR44	
	LSRA		SHIFT DECIMAL
BSML	ORAA	61.X	举
	STAA	01,X	* ADD DECIMAL POINT
	LDAA	SRTCH2	26 26
	STAA	00,X	* LOAD SIGN
	FTS		
SHR44	LDAB	(0 <u></u> =04	SHIFT 4 BYTES 4 PLACES RIGHT
SHRLP	LSR	00,X	
	ROR	01,X	
	FOR	02,X	
	ROR	03.X	
	DECB	-	
	en E	SHRLP	
	RTS		

** CALCULATES PHASE CORRECTION IN TENTHOUSANDTHS OF DEGREES **

** DUETOTIMESAPHSCORLDABLDAAPHLPLSRBLSRACMPAENELDAASTAACLRSTABCLRSTABCLRJSRLDXSTXLDXSTXJSRLDXSTXLDXSTXLDXSTXLDXSTXLDXSTXLDXSTXLDXSTXLDXSTXLDXSTXLDXSTXLDAASTAALDXSTAALDXSTAALDXSTAALDX	MPLING SKEW [0=40 PTSCYC (0=01 PHLP HRMNIC Y+1 Y XX+1 XX MULT16 U+2 Y (0=249F XX MULT16 U+2 PHS2 U+1 PHS1 [PHS1	<pre>** ''' * LOAD HARMONIC NO. INTO MULTIPLY POSITION * LOAD CONSTANT FOR MULTIPLY (0.9375 DEGREES) * CONVERT BINARY PHASE TO BCD</pre>
STX LDX STX JSR JSR RTS	BNIN (PHS10 BCCOUT BCCCCN MVDEC	* * MOVE DECIMAL (1/10) RESULTS ARE IN DEGREES
MVDEC LDAA ANDA ASLA LDAB ANDB ABA STAA RTS	C1.X [0=F0 01.X [0=0F 01.X	ROUTINE MOVES DECIMAL PT TO LEFT MOVE DEC PT LEFT * Recombine * Reload decimal PT
DISPHC LDX JSR RTS	1PHS10 LCDDIS	DISPLAY PHASE CORRECTION
** HARYONIC SIZE HRMCK LDAB LDAA	CHECK ** HRMNIC PTSCYC	

e

LSRA CBA ecc HRMOK1 (0EB2 ERROR LDAB JSR RTS HRMOK1

** DISPLAYS ERROR SYMBOL (ACCB) AND HALTS PROGRAM ** ERROR JSR CLRDIS STAB PIAB1 ESELF BRA ESELF RTS

** ENTER HARMONIC NO. 奇会 HRMSLT LDAB HAFM10 JSR DI SDG2 EN TOS2 JSR STAA HARM10 TAB DISDG2 JSR JSR BCCBN2 STAB HRMNIC JSR HRMCK JSR PHSCOR CALCULATE PHASE CORRECTION RTS

** DISPLAYS TWO DIGITS IN ACC E ON LCD FORMAT (E B 0 2.8 B) E=ELANK ** DISDG2 JSR CLEDIS STAB PIAB1 LDAA (0E2F STAA PIAA2 RTS

** CONVERTS 2 DIGIT BCD VALUE IN ACCE TO 8 BIT BINARY VALUE IN E ** BCDBN2 TBA ANDB [0E0F LSRA LSRA LSRA BEQ BCIRTS BCDLP ADDB [0E0A DECA

BNE BCELF BCORTS RTS

** ENTERS	AND	DISPLAYS	TWO	CIGI	1S 4	会会
ENTDS2	JSR	SCNKEY				
	8E Q	LASTDG				
STROVE	JSR	NCCDE				
	LDX	(PIAB1				
	LDAB	[0=FF				
	STAB	0 • X				
	JSR	STDIG1				
	ee Q	LASTEG				
	JSR	NCODE				
	LOX	IPIAE1				
	JSR	STELG2				
	pf 0	LASTEG				

LASTDG	BRA LDAA RTS	STROVR PIAB1		77
* ROUTINE PTSCON PCSET	SETS TI LDAB LDAA CMPA BCS LDAB CMPA EEQ LDAB LDAA ANDA ABA STAA FTS	4E PRE AND FC C 0 = 00 C 0 = 10 PTSCYC FCSET C 0 = 04 PTSCYC PTSCYC PCSET C 0 = 08 PIAB4 C 0 = F 3 PIAB4 PIAB4 PIAB4 PIAB4	OST COUNTERS ON TIMING BOARD * 64 PTS CONTROL BITS = 16 PTS/CYC (64) 16 PTS CONTROL BITS (16) 4 PTS CONTROL BITS * SAVE OTHER BITS * AND ADD PTS/CYC * CONTROL BITS * (CONTROL BITS APE B2,B3)	
** DISPLA ** CONTROL ** ROTACC ** ROTACC CROTAC CROT1 CROT2	YS AND S ARCT/ = 3 RE LDX BSR LDAB CMPB BHI LDAB CMPB BLS LDAB STAB JSR RTS	ALLOWS ENTER AN ACCURACY SULTS IN .016 SULTS IN .016 IRCTACC DIS2 ROTACC [0=02 CROT1 [0=03 [0=07 CROT2 [0=07 ROTACC EISDG2	RING OF ROTACC ** TABLE FOLLOWS ** B DEG ACCURACY, TIME 1 SEC CHAN. ** 175 DEG ACCURACY, TIME 16 SEC/CHAN	\$ 参登
* DISPLAYS	S AND AL DX BSR LDAB DECB CMPB BHI RTS	LLOWS ENTERIN (NCHPR DIS2 NCHPR (05 NCHLD6	NG CF CHANNEL NO. * * LOAD ADRS OF NO. OF CH OPERATED * TEST FOR CH NO. OUTSIDE FANGE C * * OK WITHIN FANGE	CN AND PPINTED F 1 TO 6
N CHLD6	LDAB STAB RTS	(06 NCHPR	OUTSIDE RANGE LOAD IN 6	
♥ DISPLAYS STATNO	S AND AI LDX BSR RTS	LLOWS ENTERIN (NSTN DIS2	NG CF STATION NO. * * LOAD ADRS OF STATION NO. DISPLAY ANC ENTER VALUES	
* DISPLAY RUNNO	AND ALI LDX	LOWS ENTEFING	GOFRUNNO. *	

e

** GENERAL ROUTINE FOR DISPLANING AND ENTERING 2 DIGIT NO. ** DIS2 STX TAELEB LCAD VALUE TO BE DISPLAYED LDAB 00,X JSR DISDG2 DISPLAY 2 DIGITS JSR ENTDS2 ENTER 2 DIGITS TAELEB LDX 鄬 STAA 00,X * STORE NEW VALUE TAB JSR DI SDG2 RTS

** TURN	PRINTER	POWER ON	發發	
PWRON	LDAA	PIABZ	* TURN PRINTER POWER ON	ł
	ORAA	(0 <u>2</u> 50		
	STAA	PIAB2	举	
	LDX	[0=3A02	* DELAY 200 MS	
	JSR	DELAY3	* (AT 1000KHZ CLOCK))
	PTS			

** CONTROL	S PARAN	ETER PPINT	SEQUENCE **
MPRINT	BSR	PWRON	TURN PRINTER POWER ON
	BSP	BL AN K	
	BSR	OFTOIS	PFINT COS AND SIN
	LDAB	HARM10	₽
	JSR	DISDG2	* PRINT HARMONIC NO.
	esr	PRNT	<i>\$</i>
	JSR	DISPER	* PRINT PERIOD
	BSR	PRNT	發
	JSR	DISCYC	* PRINT NO. CYCLES
	BSR	PRNT	學
	JSR	DSTNRN	* PRINT STATION AND RUN NO.
	BSR	PRNT	拳
	BSR	BLANK	
	BSR	PWKOFF	TURN PRINTER POWEP OFF
	RTS		

** TURN	PRINTER	POWER OFF	奇 龄				
PWROFF	LDAA	PIAB2	举				
	ANDA	(0 <u>=</u> 8 <i>F</i>	琴	TURN	POWER	OFF	
	STAA	PIAB2	琴				
	RTS						

** PRINTS	VALUE	DISPLAYED	ON LCD **
PRNT	LDAA	PIAB2	*
	ORAA	(0 <u>2</u> 2 0)	* PRINT LINE HIGH = PRINT
	STAA	PIABS	*
	LDAA	PIAB2	\$
	ANDA	(OEDF	* PRINT LINE LOW
	STAA	PIAB2	蓉
BUSY	LDAA	PIABZ	零
	ANDA	€ O Ξ O 8	* TEST BUSY LINE
	ENE	BUSY	<i>4</i>
	RTS		

	BLANK	JSR BSR RTS	CLEDIS	* PRINT A ELANK	79
	** ROUTI	NE PRIN	TS VALUES PO	INTER AT BY INDEX REG. **	
	TPRINT	JSR JSR RTS	LCCDIS PRNT		
	** ROUTI	NE PRIN	TS COS AND S	IN TRANSFORM RESULTS **	
	DFTDIS	LDAA	NCHPF	*	
45		CMPA	[[]	* SELECT NO OF CH. TO BE	PRINTED
		8E Q	CHAN1	an Se	
		CMPA	LUZ	ም አ	
*		CMDA	CHANZ	ет 1	
		OHP A BE O	CHANX		
		CHOA	CHANG IAL	* 参	
		PFO	CHAN4	举	
		CMPA	rns.	*	
		EEQ	CHAN5	₽	
	CHANG	LDX	(PHSSTR+20		
		BSR	TPRINT		
		LOX	(AMPSTR+20		
		BSR	TPRINT		
	CHAN5	LDX	[PHSSTR+16		
		BSR	TPRINT		
		LDX	(AMPSTR+16		
		BSR	TPRINT		
	CHAN4	LDX	(PHSSTR+12		
		BSR	TPRINT		
		LDX	LAMPSIN+12		
	OLIAN 7	USK	IPKINI		
	CHANS	LUX	TOOTAT		
		ESK	TAMOSTOLA		
		EDA BCD	TOGTAT		
	CHAN2		IPHSSTR+4		
	OTHIE	BSR	TPFINT		
		LDX	(AMPSTR+4		
		ESR	TPRINT		
	CHAN1	LDX	(PHSSTR		
		esr	TPRINT		
		LDX	LAMPSTR		
		BSP	TPPINT		
		RTS			
	** ROUTI	NE TRAN	SFORMS AND P	FINTS ALL HARMONICS **	
	** BEGI	NNING A	T HARMCNIC N	C. HRMNIC **	
	PRITALL	esr	TRSET		
47.8		8E Q	POUT 1	IF ZERO RETURN	
		esr	HM SE T		
		BRA	PRTALL		
	「「「」」 「」 「」 「」 「」 「」 「」 「」 「」 」 「」 」	A15 # 28 A	CEADUR AND A	FRUTE FUEDS ATHES BABMANDA	尽
	TT KUUIL	NE IRAN	SPUKAS AND P	RENIS EVERY UTHER HAMMUNIC	* *
	TT BEULN DOTEUN	DCD NTMP 41	TAKMUNLU NU	e MRENIC	* *
	FRICAN	DECA	INSEI		
		UE UA Al E	DUIL 1	TE -1 NE A PETHEN	
		ASR	HMSFT	42 + 25 +12 1 25 mar 1 48 1/19	
		2001	vir volter 1		

	1916 C. A	100 mile - 500 000 i i i 200	80
	era	PRIEVO	
TPSET	JSR JSR LDAA DE CA RTS	HRMCK SINCOS HRMNIC	
HMSET	STAA JSR STAA	HR MNIC BNBCD2	
POUT1	RTS	IIMMILLO	
<pre>** CONVER 9N8CD2 ADD10 .</pre>	TS 1 BY CLRB ADDB SUBA BCC SUBE ADDA ABA RTS	TE BINARY (0Ξ10 (0Ξ0Α ΑDD10 (0Ξ10 (0Ξ0Α	TO 2 DECIMAL (MAX VALUE IS 99)
** 2S COM ** XX 9X ** Y9 Y*:	P 16 TI X +1 1	MES 16 BIT IS IS	T FULTIPLY WITH 32 BIT PRODUCT WITH 2 SIGN EITS ** MULTIPLICANC NOT DESTROYED MULTIPLIEF PECOLICY
MULT16	LDX	(0 <u>2</u> 0005	
MLP1	CL RA STAA DEX	XX+1,X	
MLP2	ENE LDX LDAA ANDA	MLP1 (0=0010 Y+1 (01	
	TAB	FF	
	ØEQ TSTB	SHIFT	
	BEQ LDAA	A D D U + 1	
	LDAB SUBA	U X X +1	
	SBCB	X X 11 * 1	
	STAB	U	
ADD	LDAA	U+1	
	LDAB Adda	U X X + 1	
	ADCB Staa	XX U+1	
CUTET	STAB	U E E	
ាក់កា	ROR	r r V	
	ROR ROL	Y♦1 FF	
	ASR	U	
	ROR	U+1 U+2	

ιą.

ROR U+3 DEX BNE MLP2 RTS

ತ

¢

\$

к.¹

** 3 BYTE ** OUTPUT	BINARY OUT4,OU	TO 7 DIGIT (JT3,OUT2, (UT1	CD CONVERSION	INPUT D3,D2,D1 LJES ONLY	会会
BINBCD	LDX	(C106	1000000	TNEO OZ	
8IN1	BSR	BINSUB	SUETRACT	THIO CO	
	800	BIN1			
	ESR	BINACO	ADC		
		1014	100000		
	esr	BINCON	LCAD CONSTANT	INTO C3	
BINZ	esr	BINSUB			
	BCC	BIN2			
	ESR	BINSEI			
	LDX	rc104			
	BSR	BINCON			
BIN3	esr	BINSUB			
	BCC	BIN3			
	AUDA	BINAUU OUT3			
	STAA	OUT3			
	LDX	[C103	1000		
	8SR	BINCON			
BIN4	ese	BINSUB			
	esr	BINSET			
	STAA	OUT2			
	LDX	[C102	100		
a # 1. #	8SR	BINCCN			
BIN2	82K 82K	BINZAR			
	BSR	BINADD			
	ADDA	STUO			
	STAA	OUT2			
		SUET			
	STAA				
BIN6	BSR	BINSUB			
	BCC	BING			
	BSR	BINSET			
	STAA	0111			
	RTS				
** COMPONE	ENT OF E	BCD CONVERSIO	N ROUTINE **		
BINCON	CLR	SUBT			
	STAA	009A C.3	MS BYTE		
	LDAA	01,X	ويرافع والمراجع		
	STAA	C 2			
	LDAA	02,X	LS BYTE		
	STAA	C1			

·

** COMPONE BINSU8	NT OF BO INC S ESR S RTS	CD CONVERSION FOUTINE 4 SUBT SUB3	条 埠
** COMPONE BINADD	NT OF BO BSR / LDAA S DECA RTS	CONVERSION ROUTINE 4 DD3 SUBT	β. 46.
** COMPONE BINSET	NT OF B(BSR A LDAA S DECA ASLA ASLA ASLA RTS	CD CONVERSION ROUTINE ' DD3 GUBT	а 4 4
** CONSTAN C106 C105 C104 C103 C102	T TABLE CON (CON (CON (CON (CON (FCR BINARY TO BCD CON ECF.0242.0240 E01.0286.0240 EC0.0227.0210 E00.0203.0258 E00.0200.0264	VERSION ** 1000000 100000 10000 1000 1000 100
#* 3 ΒΥΤΕ ΑΠΟ3	ADD FOR LDAA C ADDA C STAA C LDAA C ADCA C STAA C LDAA C STAA C STAA C STAA C RTS	BCD CONVERSION ROUTIN 1 1 21 22 22 23 33 33	₩₩
** 3 BYTE SUB3	SUBTRACI LDAA C SUBA C STAA C LDAA C SBCA C STAA C SBCA C SBCA C STAA C	FOR BCD CONVERSION RO 1 1 1 2 2 2 2 3 3 3 3 3	DUTINE **

駗

RTS

* CALLED ATPONE KYOUT1	BY KEYS BSR ENE BSR JSR BSR ENE RTS	RUN 1 TESTB4 KYOUT1 ACQDAT SINCOS TESTB3 ATPONE	<pre>* IF SWITCH & SET DO NOT ACQUIRE DAT ACQUIRE A DATA SET TRANSFORM AND PRINT ONE HARMONIC * READ SWITCH 3 * IF SET REPEAT SEQUENCE</pre>
 ACQUIRE CALLE: ATPEVO KYOUT4 	S, TRAN D BY KE BSR BNE ESR JSR BSR BSR ENE RTS	SFORMS AND PI YS RUN 4 TEST84 KYOUT4 ACQX PRTEVO HRSET ATPEVO	FINTS EVERY OTHER HARMONIC * * IF DATA PROTECT IS ON RTN * ACQUIRE A DATA SET TRANSFORM AND PRINT RESULTS * RESET HARMONIC NO. AND TEST * REPEAT SWITCH (3)
 ACQUIRE CALLED ATPALL KYOUT7 	, TRANS BY KEY BSR BSR JSR BSR BSR BNE RTS	FORM AND PRI S RUN 7 TEST04 KYOUT7 ACQX PRTALL HRSET ATPALL	NT ALL HARMCNICS * * IF DATA PROTECT IS ON RTN * ACQUIRES A DATA SET TRANSFORM AND PRINT RESULTS * RESET HARMONIC NO. AND TEST * REPEAT SWITCH (3)
ACQX	LDAA STAA ØSR RTS	HR MNIC HSAVE ACQDAI	* SAVE HARMONIC NO. * ACQUIRE A DATA SET
HRSET	LDAA JSR BSR RTS	HSAVE HMSET TESTB3	✤ RESET HARMONIC NO. * TEST REPEAT SWITCH
* TEST SW TESTB1	ITCH 1 LDAA ANDA RTS	* PIA83 [0≘10	READ MODE SWITCH Mask out all bjt switch NO.1
♥ TEST SW TEST04	ITCH 4 LDAA ANDA RTS	₽IAB3 (0Ξ80	READ MODE SWITCH MASK OUT ALL BUT SWITCH NO. 4
* TEST S TESTB3	WITCH 3 LDAA ANDA RTS	₩ ₽IAB3 [0=40	READ MODE SWITCH MASK OUT ALL BUT SWITCH NO. 3
** CIRCUL Rorba	ATE ACC Rorb Rora Rorb Fora	8 4 BITS IN	TC ACC A **

دي

RORB RORA RORB RORA RTS

₩₩ MASTER ACQDAT	ACQUIS JSR LDAA STAA LDAA ANDA LDAB BSR ORAB STAB STAB STAA LDAB	ITICN ROUTINE CLFDIS CYCAVG PIAA1 PIAB4 IOE70 PIAA4 RORBA IOEA0 PIAA2 PIAB1 FLAG12	FCR 64 16 4 PTS/CYC ** * DISPLAY NO. OF CYCLES AVERAGED * READ PERIOD EXP * * READ PERIOD COEFFCIENT CIFCULATE E 4 BIT INTO A * SET 2ND AND 4TH DECIMAL PT EQ 1 FOR 12 BIT ADC WORDS
	ee q	BRAC1	* SELECT ACQUSIT. ROUTINE AS FN OF ADC WORD SIZE
	JSR Øra	DTAQ64 BRAC2	FOUTINE FCR 64 OR 16 PTS PER CYCLE
BRAC1	JSR	DATAQ4	FOUTINE FCR 4 PTS/CYC
BRACZ	LDAB	[2]	举
ADL P1	JSR DECB	BEEP	* CALL BEEP 20 TIMES
	ene	ADLP1	\$
	JSR	CLRDIS	CLEAR DISPLAY
	LDAA	NRUN	奉
	ADDA	[01	* THIS ADD SETS HALF CARRY FLAG
	DAA		後
	STAA	NRUN	* INCREMENT RUN NUMBER
NOACQ	RTS		
** MASTER ** WITH 12	ROUTINE BIT AD	E FOR 64 OR 1 DC WORDS	6 PTS / CYCLE ** **
DTAQ64	LDX	(1536	* NO. BYTES TO BE CLEARED
	STX	SRTCH1	奉
	LDX	(DATA	* LOCATION OF DATA TO BE CLEARED
	JSR	CLEM2	CLEAR MEMORY SECTION
	LDX	NCYCLE	* SET NO. CF CYCLES TO BE AVERAGEC
	STX	SRTCH1	₽
	BSR	AQ1664	ACQUIRE DATA
	LDX	[0384	* =64*6 (64 PTS/CYC)
DT64	STX	SRTCH1	*NC. OF 4 BYTE WORDS TO BE NORMALIZED

100 100 2 1	00001		
STX	SR TCH1	*NC. OF 4 BYTE WORDS TO BE	NORMALIZED
LDX	EDATA	*DEFINE LOCATION OF DATA	
STX	DATPT	*	
JSR	ADJUST	NORMALIZE	
RTS			

*** ACQU	ISITION	ROUTINE	FGR 16 AND 64 POINTS PER CYCLE ***	
** WITH	12 BIT	ADC DATA	VALUES. ***	
AQ1664	CL R	PIAAS	SELECT CH O	
	LDAA	PIAB3	READ MODE SWITCH	
	LDAB	PIA84	CLEAR CYCLE PULSE BY READING PIA	
	LDAS	PIA85	CLEAR SAMPLE PULSE	
	ANDA	(<u>0 Ξ</u> 2 0	MASK ALL BUT MODE 2 BIT	
	ee q	SODA	IF MODE 2 NOT SET LOOK FOR CYCLE FUL	SE

AQQ1	LDAA BPL	CPIAB5 Aqq1	* WAIT FOR SAMPLE PULSE FOR CH 0 (COWN GCING) *
1000	BRA	AQQ3	SKIP WAIT FOR CYCLE PULSE
AUUZ	BPL	A005	* WAIT FOR CYCLE PULSE * (OCCUPS SAME TIME AS SAMPLE PULSE CH 0)
AQQ 3	LDAA	PIAB5 DIAAS	CLEAR SAMPLE PILSE
CYLOOP	LDX	SR TCH1	4 (MACHINE CYCLES) TEST CYCLE COUNTER
	BEQ	AQFIN	4 IF ZERO RTS
	DE X		4 * DEC AND STORE CYCLE COUNTER
	STX	SRICH1	
	LUX	LUAIA	3 AURS UP IST VALUE IN DATA STACKING APEA 3 SET LARP COUNTER R TO NO RESERVE 46 AR 66
CHLOOP	BSR	ACOSTK	101 WAIT FOR SAMPLE PULSE CH 1 REAL CH N
	INC	PIAAS	6 SELECT CH 2
	BSR	ACQSIK	101 WAIT FCR SAMPLE PULSE CH 2, READ CH 1
	INC	PIAAS	6 SELECT CH 3
	B2K TNC	AUUSIK	A SELECT ON A
	BSR	ACOSTK	101 WAIT FOR SAMPLE PULSE CH 4. READ CH 3
	INC	PIAAS	6 SELECT CH 5
	esr	ACGSTK	101 WAIT FOR SAMPLE PULSE CH 5, READ CH 4
	CLR	PIAAS	6 SELECT CH D
	BSR	ACUSIK	101 WAIT FOR SAMPLE PULSE CH 0, READ CH 5
	DECB	LT NWO	2 DEC PISZCYC COUNTER (16 DR 64)
	ee Q	CYLOOP	4 IF ZERC START NEW CYCLE
	er a	CHLOOP	4 IF NOT 0 GO THROUGHT CH SEQUENCE ONCE MORE
AQFIN	RTS		
** ROUTIN ** Four 8 Acqstk	E ACQUI EIT EY LDAA EPL LDAA ANDA ADDA STAA	SITION AND S TES. REQUIRE CPIAE5 ACQSTK PIAA5 [OEF0 03.X 03.X	TACK - STACKS ONE 12 BIT WORD FFCM ADC INTO ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DCWM GCING) 4 4 READ LS BYTE FFCM ADC 2 MASK OUT CH ADRS 5 * STACK IN MEM 6 *
** ROUTIN ** FOUR 8 ACQSTK	E ACQUI EIT EY LDAA EPL LDAA ANDA ADDA STAA LDAA	SITION AND S TES. REQUIRE CPIA85 ACQSTK PIAA5 (0EF0 03,X 03,X PIA85	TACK - STACKS ONE 12 BIT WORD FROM ADD INTO ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DCWM GCING) 4 4 READ LS BYTE FROM ADD 2 MASK OUT CH ADRS 5 * STACK IN MEM 6 * 4 READ MS BYTE FROM ADD
** ROUTIN ** Four 8 Acqstk	E ACQUI EIT EY LDAA EPL LDAA ANDA ADDA STAA LDAA ADCA	SITION AND S TES. REQUIRE CPIAE5 ACQSTK PIAA5 (OEFO 03,X 03,X 03,X PIAB5 02,X	TACK - STACKS ONE 12 BIT WORD FROM ADD INTO ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DCWM GCING) 4 4 READ LS BYTE FROM ADD 2 MASK OUT CH ADRS 5 * STACK IN MEM 6 * 4 READ MS BYTE FROM ADD 5 STACK IN MEM
** ROUTIN ** Four 8 Acqstk	E ACQUI EIT EY LDAA EPL LDAA ANDA ADDA STAA LDAA STAA LDAA	SITION AND S TES. REQUIRE CPIAB5 ACQSTK PIAA5 (0EF0 03.X 03.X PIAB5 02.X 02.X 01.X	TACK - STACKS ONE 12 BIT WORD FFCM ADC INTO ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DCWM GCING) 4 4 READ LS BYTE FFCM ADC 2 MASK OUT CH ADRS 5 * STACK IN MEM 6 * 4 READ MS BYTE FROM ADC 5 STACK IN MEM 6 5 ADD CARRY TO SED BYTE
** ROUTIN ** Four 8 Acqstk	E ACQUI EIT EY LDAA EPL LDAA ANDA ADDA STAA LDAA ADCA STAA LDAA ADCA	SITION AND S TES. REQUIRE CPIA85 ACQSTK PIAA5 (0EF0 03,X 03,X 03,X PIA85 02,X 02,X 01,X (00	TACK - STACKS ONE 12 BIT WORD FFCH ADC INTO ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DCWM GCING) 4 4 READ LS BYTE FFCM ADC 2 MASK OUT CH ADPS 5 * STACK IN MEM 6 * 4 READ MS BYTE FROM ADC 5 STACK IN MEM 6 5 ADD CARRY TO 3RD BYTE 2
** ROUTIN ** Four 8 Acqstk	E ACQUI EIT EY LDAA EPL LDAA ADDA STAA LDAA STAA LDAA STAA LDAA ADCA STAA STAA	SITION AND S TES. REQUIRE CPIAE5 ACQSTK PIAA5 (OEFO 03.X PIAB5 02.X 02.X 01.X (OG 01.X	TACK - STACKS ONE 12 BIT WORD FROM ADD INTO ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DCWM GCING) 4 4 READ LS BYTE FROM ADD 2 MASK OUT CH ADRS 5 * STACK IN MEM 6 * 4 READ MS BYTE FROM ADD 5 STACK IN MEM 6 5 ADD CARRY TO 3RD BYTE 2 6
** ROUTIN ** Four 8 Acqstk	E ACQUI EIT EY LDAA EPL LDAA ADDA STAA LDAA ADCA STAA ADCA STAA BCC	SITION AND S TES. REQUIRE CPIAE5 ACQSTK PIAA5 (OEFO 03.X 03.X PIAB5 02.X 01.X (OG 01.X ACSK1	TACK - STACKS ONE 12 BIT WORD FFCM ADC INTO ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DCWM GCING) 4 4 READ LS BYTE FFCM ADC 2 MASK OUT CH ADRS 5 * STACK IN MEM 6 4 4 READ MS BYTE FROM ADC 5 STACK IN MEM 6 5 4 BRANCH IF CARRY CLEAR
** ROUTIN ** FOUR 8 ACQSTK	E ACQUI EIT EY LDAA EPL LDAA ADDA STAA LDAA ADCA STAA LDAA ADCA STAA BCC INC TNY	SITION AND S TES. REQUIRE CPIA85 ACOSTK PIAA5 (0EF0 03.X 03.X 03.X PIA85 02.X 02.X 01.X C00 01.X ACSK1 00.X	TACK - STACKS ONE 12 BIT WORD FFCM ADC INTO ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DCWM GCING) 4 4 READ LS BYTE FFCM ADC 2 MASK OUT CH ADRS 5 * STACK IN MEM 6 4 4 READ MS BYTE FROM ADC 5 STACK IN MEM 6 5 ADD CARRY TO 3RD BYTE 2 6 4 BRANCH IF CARRY CLEAR 7 OTHERWISE INC MS BYTE
** ROUTIN ** FOUR 8 ACQSTK ACSK1	E ACQUI EIT EY LDAA EPL LDAA ADDA STAA LDAA ADCA STAA LDAA ADCA STAA BCC INC INX INX	SITION AND S TES. REQUIRE CPIAB5 ACQSTK PIAA5 (0=F0 03.x 03.x PIAB5 02.x 01.x (00 01.x ACSK1 00.x	TACK - STACKS ONE 12 BIT WORD FECH ADC INTO ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DCWM GCING) 4 4 READ LS BYTE FECM ADC 2 MASK OUT CH ADRS 5 * STACK IN MEM 6 4 4 READ MS BYTE FROM ADC 5 STACK IN MEM 6 5 ADD CARRY TO 3RD BYTE 2 6 4 4 BRANCH IF CARRY CLEAR 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION
** ROUTIN ** Four 8 Acqstk Acsk1	E ACQUI EIT EY LDAA EPL LDAA ADDA STAA LDAA ADCA STAA ADCA STAA BCC INC INC INX INX INX	SITION AND S TES. REQUIRE CPIAE5 ACQSTK PIAA5 (OEFO 03.X 03.X PIAB5 02.X 01.X CO 01.X ACSK1 00.X	TACK - STACKS ONE 12 BIT WORD FFCM ADC INTO ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DCWM GCING) 4 4 READ LS BYTE FFCM ADC 2 MASK OUT CH ADRS 5 * STACK IN MEM 6 4 4 READ MS BYTE FROM ADC 5 STACK IN MEM 6 5 4 BRANCH IF CARRY CLEAR 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION 4 *
** ROUTIN ** FOUR 8 ACQSTK ACSK1	E ACQUI EIT EY LDAA EPL LDAA ADDA STAA LDAA ADCA STAA ADCA STAA BCC INC INC INX INX INX INX	SITION AND S TES. REQUIRE CPIA85 ACOSTK PIAA5 (0EF0 03.X 03.X 03.X PIA85 02.X 02.X 01.X C00 01.X ACSK1 00.X	TACK - STACKS ONE 12 BIT WORD FFCH ADC INTO ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DCWM GCING) 4 4 READ LS BYTE FFCM ADC 2 MASK OUT CH ADRS 5 * STACK IN MEM 6 * 4 READ MS BYTE FROM ADC 5 STACK IN MEM 6 5 ADD CARRY TO 3RD BYTE 2 6 4 BRANCH IF CARRY CLEAR 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION 4 * 4 *
** ROUTIN ** FOUR 8 ACQSTK ACSK1	E ACQUI EIT EY LDAA EPL LDAA ADDA STAA LDAA ADCA STAA LDAA ADCA STAA BCC INC INC INX INX INX INX INX FTS	SITION AND S TES. REQUIRE CPIA85 ACQSTK PIAA5 (0EF0 03,X 03,X 03,X 03,X PIA85 02,X 02,X 01,X ACSK1 00,X	TACK - STACKS ONE 12 BIT WORD FFCM ADC INTO ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DCWM GCING) 4 4 READ LS BYTE FFCM ADC 2 MASK OUT CH ADPS 5 * STACK IN MEM 6 4 4 READ MS BYTE FROM ADC 5 STACK IN MEM 6 5 ADD CARRY TO 3RD BYTE 2 6 4 BRANCH IF CAPRY CLEAR 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION 4 * 4 *
** ROUTIN ** FOUR 8 ACQSTK ACSK1	E ACQUI EIT EY LDAA EPL LDAA ADDA STAA LDAA ADCA STAA LDAA ADCA STAA BCC INC INC INC INX INX INX INX FTS	SITION AND S TES. REQUIRE CPIAB5 ACQSTK PIAA5 (OEFO 03.X 03.X 03.X 03.X 02.X 01.X COG 01.X ACSK1 00.X	TACK - STACKS ONE 12 BIT WORD FROM ADD INTO ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DOWM GOING) 4 4 READ LS BYTE FROM ADD 2 MASK OUT CH ADPS 5 * STACK IN MEM 6 4 4 READ MS BYTE FROM ADD 5 STACK IN MEM 6 5 ADD CARRY TO 3RD BYTE 2 6 4 BRANCH IF CARRY CLEAR 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION 4 * 4 *
** ROUTIN ** FOUR 8 ACQSTK ACSK1 ** MASTER DATAQ4	E ACQUI EIT EY LDAA EPL LDAA ADDA STAA LDAA ADCA STAA LDAA ADCA STAA BCC INC INC INC INX INX INX INX STS FOUTIN JSR	SITION AND S TES. REQUIRE CPIA85 ACQSTK PIAA5 (0EF0 03.X 03.X 03.X PIA85 02.X 01.X ACSK1 00.X 01.X ACSK1 00.X	TACK - STACKS ONE 12 BIT WORD FECH ADC INTO ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DOWM GOING) 4 4 READ LS BYTE FECH ADC 2 MASK OUT CH ADES 5 * STACK IN MEM 6 4 4 READ MS BYTE FROM ADC 5 STACK IN MEM 6 5 ADD CARRY TO 3RD BYTE 2 6 4 BRANCH IF CARRY CLEAP 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION 4 * 4 * 5 FER CYCLE ** 5 SET NO. OF CALLS TO ACQUS1
** ROUTIN ** FOUR 8 ACQSTK ACSK1 ACSK1 ** MASTER DATAQ4	E ACQUI EIT EY LDAA EPL LDAA ADDA STAA LDAA ADCA STAA LDAA ADCA STAA LDAA ADCA STAA LDAA ADCA STAA BCC INC INX INX INX INX INX STS ROUTIN JSR LDX	SITION AND S TES. REQUIRE CPIAB5 ACQSTK PIAA5 (0EF0 03.X 03.X PIAB5 02.X 01.X ACSK1 00.X 01.X ACSK1 00.X	TACK - STACKS ONE 12 BIT WORD FROM ADD INTO ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DCWM GCING) 4 4 READ LS BYTE FROM ADD 2 MASK OUT CH ADRS 5 * STACK IN MEM 6 4 4 READ MS BYTE FROM ADD 5 STACK IN MEM 6 5 ADD CARRY TO 3RD BYTE 4 4 4 * POINT INDEX TO NEXT STACKING LOCATION 4 * 4 * 4 * 5 PER CYCLE ** 5 SET NO. OF CALLS TO ACQUS1 * NO OF BYTES TO BE CLEARED
** ROUTIN ** FOUR 8 ACQSTK ACSK1 ** MASTER DATAQ4	E ACQUI EIT EY LDAA EPL LDAA ADDA STAA LDAA ADCA STAA LDAA ADCA STAA BCC INC INC INC INC INC INC INC INC INC I	SITION AND S TES. REQUIRE CPIAE5 ACQSTK PIAA5 (0EF0 03.X 03.X 01.X 02.X 01.X COC 01.X ACSK1 00.X 00.X EFOR 4 P(IN NOCALL I 384 SRTCH1	TACK - STACKS ONE 12 BIT WORD FFCM ADC INTC ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DCWM GCING) 4 4 READ LS BYTE FFCM ADC 2 MASK OUT CH ADPS 5 * STACK IN MEM 6 4 READ MS BYTE FROM ADC 5 STACK IN MEM 6 5 ADD CARRY TO 3RD BYTE 2 6 4 BRANCH IF CAPRY CLEAP 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION 4 * 4 * 5 FER CYCLE ** SET NO. OF CALLS TO ACQUS1 * NO OF BYTES TO BE CLEARED *

σ

JSR CLEM2 CLEAR STACKING AREA DATLP JSR ACQUS1 ACQUIPIES 8 CYCLES OF DATA

				86
	BSR	STACK	NCW STACK DATA	
	LOX	NTACG	* CEC COUNTER	
	STV	NTACO	~ 尽	
	BNE	DATLP		
	LOX	[0096	奉	
	STX	SRTCH1	* NO. OF 4 BYTE WOPDS TO BE NORMALI	ZED
	LDX	LDATA	* 8 DEETNE LOOATTON OF DATA	
	A IC 92L	AD.IUST	A LINST DATA FOR NO. OF PTS STACKED	
	RTS	HD0001	MEGON DAIN LOK NOU OF 1 10 STROKED	
** ROUTINE	FORS	TACKING & CI	CLES OF DATA AT 16 OR 4 PTS/CVC **	
STACK	LDAB	[08	* SET LCOP1 COUNTER (8 CYCLES OF CA	TA)
	STAB	SR TCH2	<u>چ</u>	
	STS	STORAR	SAVE STACK POINTER	
466 M99 Lat L 100 -	LDS	(DPSHT	SET STACK POINTEP TO TOP OF NONSTA	CKED DATA
SIKLP1	LUX	DATAB	RESET POINTER TO DATA STACKING AREA	C DIC/CVCI
STKIP2		FILTUR	PHILL DATA FROM STACK	
	Anna	n2.x	* ADD & BIT BYTE TO FOUR BYTE WORD	
	STAA	02,X	* LS BYTE (03,X) IS NOT USED	
	LDAA	01,X	· @	
	ADCA	[00]	举	
	STAA	01,X	举	
	ECC SNC	SIKB	ф ж	
STKB	DEX	U U 9 X	* SET TO NEXT DATA STACKING WORD	
31.00	DEX		a a	
	DEX		奏	
	DEX		举	
	DECB		恭	
	ENE	STKLF2	* L00P2	
	ULU	SKIUMZ	T	
	INS	STORAR	T LUUPI Restare stark painter	
	RTS	JI JIMAN	NET GUE GUERON DEPORTEN	
** ROUTINE	NORMA	LIZES DATA	ITH NO. OF CYCLES STACKED **	
ADJUST	LDAB	CYCAVG	EXP OF 2 BCD	
	JSR	BUUBNZ PAG	SUNVERT AL SENARA	
	SRA	120	# SET NG. CE SHIFT NEED TO NORMALIZ	
	STAA	NO SH F		leo.
ADJLP1	LDAB	NOSHF	RESET NO. CF SHIFT COUNTER	
	LDX	DATPT	LCAD POINTER TO DATA	
ADJLP2	JSR	SHIFTL	SHIFT 4 BYTES 1 BIT LEFT	
	DECB	10 11 00	DEC NOSHF COUNTER	
	ENE	ADJLPZ	& DEMANE IN RECET TA POENTE	
	ADDA	0000 1 1 2 8 1	* 25 COMPLEMENT NUMBERS	
	STAA	00,X	まし くるまこ Paraine in i i i i i i i i i i i i i i i i i	
	JSR	INX4	SELECT NEXT VALUE TO BE SHIFTED	
	STX	DATPT	举	
	LDX	SRTCH1	* DEC WORD COUNTER	
	STV	CD 1044	- 8-	
	BNE	ADJLP1		
	RTS	1 - mar mar 1989 1 499		

	*** ROUT	INE SETS	NO. OF CALL	S TC ACQUS1 BASED ON CYCAVG *** S Averages is a ***	87
	NOCALL	LDAB	CYCAVG	CYCAVG IS EXP OF 2 IN BCD	
		JSR	BCCBN2	CONVERT TO BINARY	
		SUBB	[03	SUE OUT 3 FOR MIN NO. OF CYCLES	
		BPL	NOCA1	IF RESULT IS POSITIVE CHANGE NOTHING	
		LDAB	[03	* OTHERWISE RESET TO 3	
		STAB	CYCAVG	绛	
		TBA			
		JSR	SETCK2	RESET CYCLE COUNTER TO 2 EXP 3	
		CLRB		* FOR N=3	
	NOCA1	LOX	[0001	\$	
		STX	NTACO	* SETS COUNTER FOR NO. OF TIMES	
u?	NOLOOP	DECB		* ACQUS1 IS CALLED	
		emi	RETRN	♦	
		ASL	NTACQ+1	皋	
		ROL	NTACQ	蓉	
-3		BRA	NOLOOP	<i>\$</i>	
	RETRN	RTS			

	*** ROJTI	NE FOR	ACQUIFING 8	BIT ADC DATA VALUES AT 16 OR 4 PCINTS PEP CYCLE ###
	*** PUSHE	S DATA	BYTES IN TO	DATA STORAGE AREA ***
	ACQUS1	LDAB	DTFTCH	SET LOOP COUNTER
		STS	SRTCH1	STORE STACK POINTER
		LDS	PSHBOT	SET STACK FOINTER TO START OF DATA STORAGE AREA
		CLR	PIAA5	SELECT CHANNEL O
		LDAA	PIA84	CLEAR CYCLE PULSE BY READING PIA
		NOP		A FUNCTIONAL NOP
	AQLPC	LDAA	CPIA84	WAIT FOR CYCLE PULSE. SAME AS SMPL PULSE CH O
		BPL	AQLPO	NCTE TEST, SET PIA ACCORDINGLY
		LDAA	PIAB5	CLEAR SAMPLE PULSE
		INC	PIAA5	SELECT CH 1
	AQLP1	LDAA	CPIA85	* WAIT FOR SAMPLE PULSE (DOWN GCING)
		epi	AQLP1	* FOR CH 1
		LDAA	PIABS	* READ DATA FOR CH D
		INC	PIAA5	* SELECT CH 2
		PSHA		* STORE DATA FOR CH C.
	AQLP2	LDAA	CPIA85	♥ WAIT FOR SAMPLE PULSE
		BPL	AQLP2	* FOR CH 2
		LDAA	PIAB5	* READ DATA FOR CH 1
		INC	PIAAS	* SELECT CH 3
		PSHA		* STORE DATA FOP CH 1
	AQLP3	LDAA	CPIA85	* WAIT FOR SAMPLE PULSE CH 3
		BPL	AQLP3	举
		LDAA	PIA85	* READ CH 2
		INC	PIAAS	* SELECT CH 4
×		PSHA		* STORE CATA CH 2
	AQLP4	LDAA	CPIA85	* WAIT FOR SAMPLE PULSE CH 4
		EPL	AQLP4	*
		LDAA	PIABS	* READ CH 3
×7		INC	PIAAS	* SELECT (H 5
		PSHA		* STORE DATA CH 3
	AQLPS	LDAA	CPIA85	* WAIT FOR SAMPLLE PULSE CH 5
		BPL	AQLP5	峰
		LDAA	PIAB5	* READ CH 4
		CLR	PIAA5	* SELECT CH O
		PSHA		* STORE DATA C4 4
	AQLP6	LDAA	CPIA85	* WAIT FOR SAMPLE PULSE CH O
		BPL	AQLP6	岑

LDAA	PIAB5	* READ CH 5
INC	PIAA5	* SELECT CH 1
PSHA		* STORE DATA CH 5
DEC8		4
BNE	AQLP1	* LCOP
LDS	SRTCH1	RESTORE STACK POINTER
RTS		

** ROUT	INE DISP	LAYS VOLTAGE	ON SELECTED CHANNEL IN MILLIVOLTS **
** RANG	E +/- 50	00 M V	
VOLTMT	JSR	CLEDIS	
	JSR	RELESE	WAIT FOR RELEASE OF KEY
KEYFND	JSR	RWSLCT	(SCNKEY AFTER RELESE)
	ee Q	VLTOUT	RTS IF PTN IS FOUND
	JSR	NCODE	举
	ANDA	(0 20 F	祭
	DECA		<i>₩</i>
	STAA	PIAA5	* SELECT CHANNEL
	LDAA	PIA85	CLEAR SAMPLE PULSE BY READING FIA85
	JSR	RELESE	WAIT FOR RELEASE OF KEY
VLP1	JSR	KEYQ	LCCK FOR ANY PRESSED KEY
	BNE	KEYFND	IF FOUND DECODE KEY
	LDAA	CPIA85	*WAIT FOR SAMPLE PULSE
	BPL	VLP1	举
	LDAA	PIAB5	MS 8 BITS
	LDAB	PIAA5	LS 4 BITS
	ANDB	(0 = F 0	MASK CH ADRS
	ADDA	10 <u>3</u> 80	REMOVE OFFSET (INVERT SIGN BIT)
	STAA	Y	\$
	STAB	V + 1	<i>₽</i>
	esr	MVDIS	CCNVERT TO MILLIVOLTS THEN DISPLAY
	BRA	VLP1	
VLTOUT	PTS .		
8 001021	STO V TA	M71 1 7 11031 80	THEN ATCOLATE DECIST ON LOD &
- CONVEI		WILLINGE	A OCTUD MUTTOLY (40044)
WAN72	LUX	ししこもしうう	T SEIUP PULITPLI (19341)
	STA	A A MARKA TAT	T FUR MY RESULT
	JSK	MULI16	
	LUX		86 ¥ \$\Left m m
	JSK	SHIFTL	TIMES 20
	SIX .	DNIN	ALCER V MAA VV VVAA
	LUX	LY	(N252 18147844844471
	A16 001	000001	CALVERT TA BCR
	JON		NUTVERT IV DUU Nyeniav
	USK	FC6072	USOFFHI
	RID		
NE COAN			O OATA FAD SPOALLTF WAY HALLE AN CELEAT

** SCANS	PREVIOUS	SLY ACQUIRED	DATA FOR ABSOLUTE MAX VALUE ON SELECTED CHAN
MAXSGN	JSR	CLEDIS	
MAXLP	JSR	SCNKEY	SCAN KEY PAD FOR PRESSED KEY
	8E Q	MXOUT	TEST FOR RTN KEY
	JSR	NCODE	冬
	ANDA	(0 <u>=</u> 0F	* DETERMINE CHANNEL NO.
	STAA	CHCNT	STORE CH NO.
	BSR	FNDMAX	FIND MAXIMUM VALUE
	esr	MVDIS	CONVERT TO MILLIVOLTS AND DISPLAY
	BRA	MAXLP	LCOP FOR NEXT KEY
MXOUT	JSR	CLEDIS	

静

RTS

** SCANS (DNE CHAI	NNELS DATA F	OR ABSOLUTE MAX VALUE - CALLED BY MAXSGN **
FNDMAX		Y Y & 1	
	CLR	SRTCH3	CLEAR SIGN FLAG 2
	LDAA	PTSCYC	A CET COUNTED FOR NO OF DATA DOTNTO
	LDX	CNILNC CDATA-4	BACK SET POINTER TO DATA POINTS
	LDAB	CHCNT	READ CHANNEL NO.
CHNLP	ESR	INX4	Å X of y daynted ya fydry daya usine af offrayer au
	FNF	CHNLP	* SET PUINTER TU FIRST DATA VALUE UP SELECTEL UN
NXTV	CLR	SR TCH2	CLEAR SIGN FLAG 1
	LDAB	01.X	* LCAD IN SELECTED DATA VALUE
	LDAA APL		* MS BAIF
	INC	SRTCH2	SET SIGN FLAG
	COMA		* NEGATE VALUE SO THAT ALL VALUES USED
211.19	COMB		ARE FUSITIVE SAVE AND A
	СМРВ	¥+1	
	SBCA	۲	*
	LDAA		COMPARE SELECTED VALUE WITH LAST & STORED LARGEST VALUE, STORE LARGEST VALUE
	STAA	Y	\$ JINIED FWIGEDI AMFREA DIRICE FWUGEDI AMFRE
	STAB	V+1	英
	LDAA	SR TCH2	* SAVE SIGN FLAG OF LARGEST VALUE
LESS	BSR	INX24	* SET FOINTER TO NEXT DATA VALUE 24 BYTES COWN
	DEC	CNTINC	DEC NO. DATA POINTS COUNTER
	UNE	NXIV	* *
	EEQ	FDCUT	* RESTOFE SIGN TO LARGEST VALUE
	COM	٧	8-
FOOLT	COM	V+1	<u>چ</u>
1 0001	CIN		
~~	603 L J L J	☆ KIAN PIP XAP A \$\$ P	41.000 000 00 00 00 00 00 00 00 00 00 00 0
INX4	INX TNX	INCREME IT :	INDEX REG FOUR TIMES
	INX		
	INX		
	KI2		
* INCREMEN	T INDE	X REGISTER 2	4 TIMES *
INX24	LDAB	[24	
TNYLY	DECB		
	ENE	INXLP	
	RTS	v	
69 167 maj 1 . 4 45a	معديمه م		20 01/02 0/02 D
** DUMPS	APE SE	NELS UF DATA NT TO THE DA	TO CHART PAPER O AT A RATE OF 30 VALHES PER SECOND ##
** DATA RI	ATE IS	SET BY VAFIA	BLE SRTCH1 AND ROUTINE DELAY4 **
CHARTD	LDX	(0=101A	* 4122 DECIMAL
	STX	SRICH1	T FOR DELAY OF 330000 MACHINE CYULES STAFT WITH ZERO VOLT LEVEL
	esr	SNDANA	હાર ખાદ્યુ કરી શૈકી ચેરી અંગ્રે અંગ્રે સાર્ગ્ય પ્રચ્યે શક્ય દિવાર દિવાર દિવાર દિવાર દિવાર દિવાર દિવાર દેવાર દેવ

** DISPL	AVS 6 CH	DATA ON SC	OPE WHILE SCANNING KEY PAD FOR RIN AND **
** NO. F	DR POSIT	IONING TRIG	GER PULSE IN ONE OF 6 CH POSITIONS **
OSCDIS	LDX	(0 <u>2</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	STX	SR TCH1	* SET DELAY FOR ROUTINE DELAY4
	JSR	RELESE	WAIT FOR RELEASE OF KEY
FNDKEY	JSR	RWSLCT	(SCNKEY AFTER FELESE)
	BE Q	OSCOUT	RTS IF RETURN KEY FOUND
	JSR	NCCDE	
	ANDA	LOZOF	
	STAA	SRICHS	STURE POSITION OF SCOPE TRIGGER PULSE
00010	JSR	RELESE	ACTOR & ALL AP OLES FA OLA
USCLP	BSK	SNUANA	SEND 6 CM OF DATA TO DAG
	JSK	REYQ	LY T LUUK FUR ANT MREDDEU NET
	DNE	TNUKET	4 IF KEY FOUND JUMP OUT OF LOOP AND DECOUL
ACCOUT	DKA	USULP	6¢
036001	· K I 3		
** SENDS	6 CHANN	ELS OF STOP	ED DATA TO 8 BIT DIGITAL TO ANALOG CONVERTER **
** DATA I	RATE IS	DETERPINEI	BY ROUTINE DELAY4 AND SRICH1.
SRICH!	DETERM	INES FOSITI	CN OF SCOPE IRIGGER PULSE
TT WIH		64 PUINTS	ARES 305 MILLISECUNDSO URI REPRESE MAIL TT
AA MICE I	SE ABUUI	42 ILMES P	ER SECOND AT 1MHZ CPO CLUCK
SNDANA	LDAA	(n=Fn	2 *
	STAA	CPTAA3	5 * ACCESS DATA DIRECTION REG.
	LDX	(0=FFF4	3 * CHANGE TO DUTPUTS
	STX	PIAA3	6 * MAKE CA2 AN OUTPUT (LOW)
	CLR	CHCNT	6
NXTCH	BSR	ZEFOL	MIN OF 148 CYCLES
	INC	CHCNT	6
	LDAA	CHCNT	3
	CMPA	٢7	2 SET NEXT CHANNEL TO BE OUTPUT
	6E Q	SNRTS	4 IF CHCNTEQ 7 RTS
	CMPA.	SRTCH5	3 * CHANNEL POSITION FOR SCOPE TRIGGER
	BN E	NOTRIG	4, *
	JSR	TRIGGR	27* SEND PULSE TO TRIGGER SCOPE
NOTRIG	LDX	[DATA=4	4 * ADD 4 TIMES CHANNEL NO. (CHCNT) TO
	STX	DATPT	5 * DATA-4 TO SET POSITION OF NEXT CH
	ASLA		2 * TO BE SENT TO DAC
	ASLA		2 *
	ADDA	DA TP T+1	3 *
	STAA	DATP1+1	4, *
	LUAA	DAIPI	3 °
	AUUA		
	STAA	DAIPI	
	CTAA CTAA	CNITTIC	LA CET NO DE DOTNIC DED OLANNE!
AVTOAT	JIAA	DATOT	4 SEI NOU OF FOIRIS FER CHANNEL (
NAIDAI		ON IPI	S & LOAD BATA VALUE INTO ACC A
	ADDA	0090	2 & CONVERT 25 COMP VALUE TO OFFSET RINARY
	STAA	PTAA3	5 * SEND VALUE TO DIGITAL TO ANALCE CONVERTER
	LOX	SR ICH1	¹ 2 − − − − − − − − − − − − − − − − − −
	BEQ	SKIPNY	- La 4
	ESR	DELAY4	· · · · · · · · · · · · · · · · · · ·
SKIPDY	LDAA	DATPI+1	3*
	ADDA	[24	2* SELECT NEXT DATA VALUE ON THIS CHANNEL
	STAA	DATPT+1	4^{*} (DATPT = DATPT+24)
	LDAA	DATPT	3*
	ADCA	100	24

	SNRTS	STAA DEC BNE BRA LDAA STAA LDX STX RTS	DATPT CNTINC NXTDAT NXTCH $10 \equiv F0$ CPIAA3 $(0 \equiv 0 0 0 F 4$ PIAA3	6 * DEC POINTS PER CHANNEL COUNTER 4 * IF NOT ZERO TAKE NEXT DATA PCINT 4 START ON NEXT CHANNELS DATA 2* ACCESS CATA DIRECTION REG. 5* 3* MAKE LINES INFUTS AGAIN FOR KEY PAD 6* KEEP CA2 LOW 5	91 USE
25	** DELAY ** VALID DELAY4 DYLP	FORMULA FOR SRT LDX INX DEX	IS 30+(SRT CH1 = 0000 T SRTCH1	CH1)*8 = NO. OF CYCLES. ** HROUGH FFFE . ** 5 4 INX MAKES SRTCH1=0 SHORTEST DELAY FOS 4	SIPLE
ġ		en e Rts	DALb	4 5	
	** ZERD V ZEROL ZERLP	OLTS LII LDAA STAA LDAA BSR DECA BNE RTS	NE. USED AS COE7F PIAA3 [4 DELAY4 ZERLP	CHANNEL SPACEP. MIN OF 148 CYCLES ** 2 * 3 * Set dac to zero volts 2 (MIN OF 26 CYCLES) 2 4 5	
	** SCOPE TRIGGR	TRIGGER LDAB STAB LDAB STAB RTS	PULSE 7 C [0=FC CPIAA3 [0=F4 CPIAA3	PU MACHINE CYCLES WIDE ** 2 5 Make Line Ca2 High 2 5 Make Line Ca2 Low	
el S	** MASTER ** TRANSF ** AMP AN POLAR PLARLP	ROUTINI ORM TO I D PHASE LDX STX LDX STX CLR INC BSR LDX JSR STX LDX JSR STX LDAA CMPA BNE JSR RTS	E FOR CONVER POLAR COORDI ARE OBTAINE [STARTC REAL [STARTS IMAG CHNO CHNO SETROT IMAG INX4 IMAG REAL IN X4 REAL NCHPR CHNO PLARLP BEEP	TING REAL AND IMAGINARY PARTS FROM ** NATES DUSING CORDIC ROTATIONS ** * DEFINE START OF REAL LOCATIONS * DEFINE START OF IMAGINARY LOCATIONS CLEAR CHANNEL NO. CALCULATE AMP AND PHASE FOR CHANNEL CHN SET POINTER TO NEXT IMAG VALUE SET POINTER TO NEXT REAL VALUE * * IF CHNO EQU NO. OF CHANNELS USEC, RTS * SOUND BEEPER	0

** NEGATE VALUE (AN APPROXIMATION) **

NEGATE	COM	06,X
	COM	01.X
	COM	02,X
	COM	03,X
	RTS	

** LOADS	VALUE P	OINTED	TO BY INC	EX INT) U.	THEN SHIF	TS U	ROTACC	PITS	\$
** TO RI	GHT. THE	NO OF	SHIFTS CO	NTROLS	THE	RCTATION	STEP	SIZE		4
LSWORK	LDAA	X 0 0 0	5							
	STAA	U	lş.	MACHINE	E CYC	LES				
	LDAA	01,X	5							
	STAA	U+1	4							
	LDAA	X, S 0	5							
	STAA	U+2	Lą.							
MSHIFT	LDAB	ROTACC	3	LOAD NO) SHI	FTS COUNT	ER			
SFLOOP	LSR	U	6							
	ROR	U+1	6							
	FOR	U+2	6							
	DECB		2							
	ENE	SFLOCP	lą.							
	RTS									

** FOUTINE SETROT - MOVES VECTOR TO FIFST QUADRANT, USES CORCIC ROTATIONS * ** TO ROTATE THAT VECTOR TO 0 DEGREES, CALCULATES NO OF DEGREES ROTATED 88 ** CORRECTS FOR ACTUAL QUADRANT, CORRECTS FOR PHASE SHIFT DO TO DATA 祭祭 ** SAMPLING TIME SKEW, FINAL PHASE ON CHANNELS 2 TO 6 IS RELATIVE TO CH 1 ** ** FHASE, FINAL PHASE ON CH 1 IS ACTUAL PHASE, CALCULATES AMPLITUDES IN 食舍 脅會 ** MILLIVOLTS PER ROOT HZ . COEFFFF SETROT LOX * SET NO OF ROTATIONS COUNTER TO -1 STX SRICH1 ** MOVE VECTOR TO 1ST QUAIRANT 会 会 ** MIXED IN WITH QUAD MOVE IS A TEST TO SEE IF BOTH REAL AND IMAG PARTS ** ** ARE ZERC (CNLY MS 16 BITS ARE LOOKED AT) IF TRUE ROTATION CNT SET 0 会会 TQUAD CLRB LDX IMAG IST 00,X PIMAG BPL NEGATE IMAGINARY PART BSR NEGATE ADDB 0010 = NEC. IMAG PART 102 PIMAG CLRA CLEAR ZERO FLAG LDX LCAD 2 MSB TO INDX, IF ZERO SET FLAG X,00 NOTZRO BNE NCT ZERO INCA IMAG PART IS ZERO, SET FLAG NOT 2RO LDX REAL TST 00 .X EPL PREAL 8SR NEGATE NEGATE FEAL PART 0001 = NEG. REAL PART INCO QUAD IS CODE FOR QUADRANT OF VECTOR PREAL STAB QUAD LOX X.00 LCAD 2 MSB OF REAL VALUE BNE ROTATE NOT ZERC CONTINUE DECA DEC ZERO FLAG **ENE** IF ZEPO MEANS BOTH VALUES WERE ZEFC ROTATE STX SRTCH1 ZERC IS IN INDEX SO IT IS USED TO SET ROT CNT BOTH WERE O SO SKIP ROTATION ROUTINE BRA CORECT QUAD = 00, 01, 10, 11 ECU QUADRANT 1, 2, 4, 3. 鄙 ** NEXT SECTION FOTATES VECTOR (IN FIRST QUAD.) CLOCKWISE UNTIL IMAG ** ** BECOMES NEGATIVE. NO. OF ROTATION STEPS IS IN SRTCH1 承货 ROTATE LDX SRTCH1 4 # INX 4 L. STX SRTCH1 5 * INC ROTATION COUNTER

索

				93
	LDX	IMAG		4
	BSR	LSWORK		LOAD U AND SHIFT RIGHT
		REAL NZ V		4 ENEVT 44 LINES OF COS ODS A STALL EVEN
	ANNA	U39A 1142		S MEAL II FINES DO CAS 5 CAS 4 STUNG EXA M
	STAA	0.3 . X		6
	LDAA	02 •X		5
	ADCA	U+1		3
	STAA	02,X		6
	LDAA	01,X		5
	ADCA	U		3
	STAA	01,X		6
	208	NOINC		
NOTNO	TNC	UU9X Isunev		
NOTIO	LUX	TMAG		la la
	LDAA	13 . X		5 NEXT 11 LINES DC SIN=SIN - COS/2 EXP N
	SUBA	U+2		3
	STAA	03.X		6
	LDAA	02,X		5
	SBCA	U+1		3
	STAA	02,X		6
	LDAA	01,X		5
	SBCA	U		ঠ দ
		U19A 00.V		6
	SBCA	100 97		2
	STAA	00.X		6
	BCC	ROTATE		4 IF SIN IS STILL POS. LOOP BACK
** NEXT	SE CTION	CORRECTS	ROTA	ATICN ANGLE TO ORIGINAL QUADRANT **
CORECT	LDX	SR TCH1		* SCALE UP ROTATION STEP
	SIX	XX		ም ይ
	STY	A [T \ 202		·
	JSR	MULT16		*
	LDAB	ROTACC		* SET NO. OF SHIFTS TO OBTAIN ANGLE IN TEM
	ADD8	[03		* THOUSANDTHS OF DEGREES
	LDX	٢U		神
	JSR	SHRLP		* SHIFT RIGHT NOMINAL SHIFT IS 5
	LDAB	QUAD		LCAD QUADRANT CODE
	ee u	NECATE		QUADO I NU CORRECTION
	CMDR	NCONIC (A2		NECATE ANGLE DHADDANT &
	BE Q	COROUT		
	LDAA	[0=40		* ADD 180.0000 DEGREES
	ADDA	U+3		冬
	STAA	U+3		孝
	LDAA	[0=77		* 1800000 DEC = 187740 HEX
	AUCA	042		ም
		072 [0=18		举
	ADCA	U+1		举
	STAA	U+1		奉
	CMPB	[01		QUADRANT 2
	8E Q	COROUT		
	JSR	NEGATE		NECATE ANGLE
** NEXT	SECTION	CORRECTS	FCR	DATA SAMPLING TIME SKEW **
CUKUUI Pri and	LUAB	CHNU		LUAU CHANNEL NJO
I VEVVI	BEQ	NOPSHE		CHANNEL 1. NO PHASE CORRECTION NEEDED
	LDX	[PHS1		* SUBTRACT PHASE SHIFT FROM CHANNEL PHASE
	esr	SUBFU3		₩ 200 m 100 ± 0000 ± 0000 ± 000 ± 000 ± 000 ± 000 ± 000 ± 000 ± 000 ± 000 ± 000 ± 0

-14

8P.A PCLOOP IF NEELED REPEAT PHASE CORRECTION ** NEXT SECTION REFERENCES ALL PHASES TO CH 1 PHASE 當於 NOPSHF LDAB CHNO 怒 DEC8 器 BED SKREF * CHECK CHANNEL NO IF CH 1, SKIP * SUBTRACT CH 1 PHASE FROM OTHER REFCH LOX (STARTS **BSR** SUBFU3 * CHANNEL PHASES SKREF LDX IMAG 4 LOAD U INTO BINARY BSR STRU3 * IMAGINARY LOCATION ** NEXT SECTION CONVERTS AMPLITUDE FOUND BY ROTATION TO MILIVOLTS ** ** IT IS EQUIVALENT TO MULTIPLYING AMPLITUDE BY 1.19265869 黎崧 * LOAD AMPLITUDE INTO MULT POSITION CNVTMV LDX REAL 惎 LOX X,00 擧 STX XX 19540 CONSTANT HAS ERROR OF 4 PFM LDX [0=4C54 STX Y JSR MULT16 MULTIPLY LDAB [06 暴 JSP. * CORRECT MULTIPLY BY SHIFTING SHFLP REAL 部 LDX ØSR STRU3 * STORE NEW AMPLITUDE RTS ** STORE 3 LS BYTES OF U IN 3 MS BYTES CF INDEXED LOCATION ** STRU3 LDAA U+1 STAA 00.X LDAA U+2 STAA 01.X LDAA U+3 STAA X, 50 RTS ** SUBTRACT 3 MS BYTES OF INDEXED LOCATION FROM 3 LS BYTES OF U ** SUBFU3 LDAA U 🕆 3 SUBA C 2 % X STAA U#3 LDAA U+2 SBCA 01.X STAA U+2 U+1 LDAA SBCA 00,X STAA U+1 RTS ** ROUTINE MAKES COMPUTER JUMP TO NEXT 4K MEMORY SECTION, IE BEGIN+0:1000 ** ** IT IS CALLED BY PRESSING «RUNB» THEN «0», IT MAY BE USED TO JUMP TO AN ** ** AUXILLARY SET OF CONTROL OR TEST PROGRAMS RUNB JSR SCNKEY NCODE JSR TSTA ENE RBOUT JMP BEGIN+0=1006 RBOUT RTS

> STOP END

94

৶彡5% UD5555, 555005550055, 55555000056, 555555000, 55005555555, 50050555555, 555500000, 555555000, 55555000, 5 1 2 3 ls 5 6 7 Ø ç EMRECOO 96 **BKY69K*C 02 OCT 78 18.13.15. 0.63: 44 PAGES: 2,643 PRINT LINES: PRINTER 12, EQ R BILLBOARD WRITEUPS SUBSET BEANEWS WAS LAST CHANGED SEP 28 HANDBOOK SUBSET CHANGES WAS LAST CHANGED SEPT 13 OCT 1 LBL NEWSLETTER THE COMPUTER CENTERS MONTHLY NEWSLETTER (NOT BKYNEWS) IS FREE, TO GET ON THE MAILING LIST, CALL X5529. LIBRARY SUESET CATE SEPT 30 THE MSS WRITER WILL BE SHUT OFF FOREVER OCT. 1, 1978 SEPT 29 PSS HARDWARE FAILURE THE FOLLOWING PSS SUBSETS WERE DESTROYED DUE TO HARDWARE FAILURE LIBRARY SUESET HIGHRNPF FCCEFF, STFCF ACCOUNTING CHARGES TO CHANGE SEPT 28 THE CHANGES IN ACCOUNTING (HARCES DETAILED IN BEANEWS WILL GC INTO EFFECT OCTOBER 1, 1978. SEP 21 UNUSED TAPES ON THE MOVE TAPES NOT ACCESSED FOR OVER 14 MONTHS WILL MOVE INTO INACTIVE STORAGE OCT. 10. SEND A SIGNED TLIST INDICATING THOSE TAPES THAT YOU WANT INACTIVE TO TAPE LIBRARIAN. CTHERWISE, THEY WILL BE FORCE-MOVED AND WILL DECREMENT YOUR GROUP TAPE ALLOCATION BY A LIKE NUMBER. SEPT 14 NEW WRITEUP AVAILABLE (WITH APOLOGIES) ANNOUNCING THE BIRTH OF A NEW WRITEUP CALLED NETWORK WHICH CESCRIBES THE USE OF THE COMMERCIAL NETWORK TYMNET AND THE ARPANET AT BKY. TO GET A COPY . . . LIBCOPY, WRITEUPS, OUTPUT, NETWORK. DISPOSE, OUTPUT=PR, PA=1F. (IF PRINTED AT BKY) INTERACTIVE TIMEOUT TO BE REDUCED TO 10 MINUTES SEPT 11 ON SEPT 13, THE INTERACTIVE TIMEOUT WILL BE REDUCED FROM 30 MINUTES TO 10 MINUTES. THE REASON FOR THIS CHANGE IS TO TRY AND REDUCE CLCGGED LOGON QUEUES ON THE E AND C MACHINES. WE HOPE THIS CHANGE WILL IMPPOVE SERVICE. ONCE AGAIN WE ASK YOUR COOPERATION. PLEASE RELEASE RESOURCES WHEN YOU ARE NOT ACTIVELY INTERACTING WITH THE COMPUTER.

TO CALL A CONSULTANT 415-843-1089 DIRECT DIAL 451-5981 FTS ONLY APPENDIX B

BOARD LAYOUTS FOR MICROCOMPUTER SIGNAL PROCESSOR

Figure 8. LCD and keypad interface

XBL 7810-11974

Figure 9. Digital to analog converter.

XBL 7810-11975

Figure 10. Interface board layout.

XBL 7810-11977
Figure 12. Programmable sample and cycle timer.

XBL 7810-11978

 \mathbf{i}

Figure 13. Data acquisition board.

Figure 14. Data acquisition board layout.

104

XBL 7810-11980

Figure 17. Memory board layout.

107

XBL 7810-11983

103

XBL 7810-11984

Figure 19. CPU board layout.

.

.

GRASS VALLEY FIELD TEST

LIST OF FIGURES

Figure	1.	Location map, northwestern Nevada, showing prominent thermal springs within and outside of the Battle Mountain high heat flow area (after Sass et al, 1971). (XBL 735-676)	113
Figure	2.	Electromagnetic transmitter and receiver locations. (XBL 784-8035)	114
Figure	3.	Generalized slice of solution space. (XBL 7810-6556)	121
Figure	4.	Amplitude spectra, T3-R1. (XBL 7810-6562)	125
Figure	5.	Phase spectra, T3-R1. (XBL 7810-6560)	126
Figure	6.	Amplitude spectra, T3-R2. (XBL 7810-6561)	127
Figure	7.	Phase spectra, T3-R2. (XBL 7810-6559)	128
Figure	8.	Amplitude spectra, T3-R2, two-layer fit. (XBL 7810-6563)	129
Figure	9.	Phase spectra, T3-R2, two-layer fit. (XBL 7810-6564)	130
Figure	10.	Amplitude spectra, T3-R4. (XBL 7810-6558)	131
Figure	11.	Phase spectra, T3-R4. (XBL 7810-6567)	132
Figure	12.	Amplitude spectra, T3-R4, two-layer fit. (XBL 7810-6557)	133
Figure	13.	Phase spectra, T3-R4, two-layer fit. (XBL 7810-6555)	134
Figure	14.	Amplitude spectra, T3-R5. (XBL 7810-6554)	135
Figure	15.	Phase spectra, T3-R5. (XBL 7810-6553)	136
Figure	16.	Resistivity sections along Line E-E' obtained from interpretations of 1 km and 2 km sounding data (after Jain, 1978). (XBL 784-8029)	137

This section describes a field test of the EM-60, the data analysis and interpretation procedures, and a comparison between the survey results and the results obtained using other electrical techniques. The Leach Hot Springs area in Grass Valley, Pershing County, Nevada, was chosen for the first field site at which the entire system would be tested following local testing in Berkeley. The site, approximately 22 miles south of Winnemucca, lies within the regionally high heat flow area of northern Nevada (Figure 1) and has been surveyed in detail by means of various geophysical techniques (Beyer et al, 1976), including a low power prototype of the EM-60 (Jain, 1978).

Survey Plan

The initial field test was conducted along established geophysical line E-E' (Figure 2) at stations previously occupied by Jain (1978). For direct comparisons of raw data and results with those of Jain, we followed his field procedures. The EM transmitter was placed at 3 West and the receiver was moved between sites 4 West, 5 West and 1 West. The unit separation between stations is 1 km.

Despite the dust and high temperatures during the work in July 1978, the survey proceeded quickly. The survey area is nearly flat (elevations of all stations are within 3m of each other) and the access is good. The principal instrumental problem encountered was the overheating of the electronics box for the Develco magnetometer caused by the high ambient temperature. This was easily solved by keeping it in an ice-filled tray.

Instrumentation and Procedures

The transmitter loop consisted of a 4-turn, 50m radius horizontal loop of #6 AWG copper welding cable. Current was supplied in a square wave of positive and negative polarity at any desired period between $10^{-3} - 10^3$ sec by a 60 kW generator (see Section II on the transmitter). Peak-to-peak current carried by the coil ranged from \sim 126 amp at 0.1 Hz to \sim 15 amp at 10^3 Hz.

Hot Springs in Northwestern Nevada

(XBL 735 676)

Figure 1. Location map, northwestern Nevada, showing prominent thermal springs within and outside of the Battle Mountain high heat flow area (after Sass et al, 1971).

XBL 784-8035

The receiver system, described in detail in Section II, utilized a 3-axis Josephson-effect superconducting magnetometer as a sensor. A Develco model 8230 with sensitivity $10^{-5}\gamma$ / Hz was used. Each signal from the sensor was band-passed by means of a four-pole Butterworth filter and amplified. The pass band for a particular transmitter period is chosen according to the following considerations:

- The low-frequency cut-off is set just below the fundamental frequency to remove the geomagnetic and sferic noise. Natural geomagnetic noise is particularly bad at 20-30 sec period.
- (2)The high frequency cut-off provides anti-alias control and it should be set below the Nyquist frequency. However, as it is desirable to reduce high-frequency natural noise, we set the high-cut frequency just above the highest odd harmonic we wished to extract from the signal. Although the system is designed for periods up to 1000 seconds, we learned that it is extremely difficult to obtain reliable results at periods 50 seconds and larger. This limitation is primarily due to lightning and sferic noise swamping the signal during the long times needed to average periods longer than 50 seconds. In Nevada it was almost impossible to find a 50 second or longer period without a lightning strike that would either throw the SQUID detectors out of lock or generate signals that exceeded the receiver's dynamic range. A further fundamental problem is that the natural noise spectrum rises roughly as 1/f below 0.1 Hz and so the averaging time to achieve a desired signal-to-noise ratio rapidly becomes impractical as the frequency decreases.

Experimentation was conducted to determine the number of harmonics that could be obtained accurately from a given period. Field tests show that the seventh harmonic can be obtained with no substantial errors for frequencies below 100 Hz. This allows us to obtain an entire decade of frequency measurements from a single transmitter period. However, above 100 Hz only, the fundamental frequency is transformed because the sampling rate is reduced to only four points-per-cycle. This does not significantly slow down the rate of data acquisition. For further details of the receiver capabilities see Section II on the digital signal averager.

After digitization each signal is averaged for the desired number of cycles, then Fourier transformed to yield spectral information on the odd harmonics of the signal. These values are printed on a thermal printer in one of two forms; either real and complex parts, or amplitude and phase.

The analog signals from all channels were also monitored continuously by means of two Gould paper-chart recorders. This enables the operator to interrupt and recommence the signal averaging, should interference from lightning or large spheric fluctuations degrade the data. A block schematic of the data acquisition system is shown in Section II.

Method of Interpretation

The interpretation of the electromagnetic sounding data (amplitude and phase) has been carried out using a direct one-dimensional (layered earth) inversion method. An initial estimate of the model parameters is made, and the inversion algorithm modifies these parameters until a bestfit, in the weighted-least-squares sense, is found between the observed data and the model predicted data. The application of direct inversion methods in electrical exploration has been described by Wu (1968), Parker (1970), Glenn (1973), Inman et al. (1973).

The inverse problem can be stated mathematically as

$$\phi = \sum_{i=1}^{n} w_{i}^{2} [y_{i} - f(b^{\circ}, x_{i})]^{2}$$
(1)

where

N is the number of observed data
wi is the weighting factor for the ith data value
yi is the ith observed data (i.e. amplitude or phase)
b is an initial estimate of the M model parameters (e.g.,
resistivity and layer thickness)

x. is the known dependent variables (e.g., frequency and geometry)

f is the non-linear function which relates the parameter b^{0} , x_{i} , to the observed quantities phase and amplitude.

Simply stated, the inverse problem is to find a set of model parameters, b_j which minimize ϕ . The values of b_j which minimize (1) are given by the solution to the set of equations:

$$\frac{\partial \phi}{\partial b_j} = 0$$
 $j = 1, M$ (2)

Writing (1) in this form, we obtain

$$\sum_{i=1}^{n} w_i^2 f_i \frac{\partial f_i}{\partial b_j} = \sum_{i=1}^{n} w_i^2 y_i \frac{\partial f_i}{\partial b_j}, \quad j = 1, M \quad (3)$$

where

$$f_i = f(b_i, x_i).$$

In general, the function $f(b, \chi)$ is a non-linear function of b_j ; thus making solution of (3) in closed form impossible. In practice ϕ is minimized by an interative technique.

Inversion Algorithm

The iterative weighted-least-squares algorithm used to interpret the EM-60 data follows a modified Marquardt approach. The model function $f(b_{,x}^{o},x)$ in equation (1) is expanded as a Taylor series about the current estimate, b, and only the first order terms are retained. This yields a linear estimate of the parameter changes, t, needed to reach the minimum of ϕ . The classic least squares statement of the problem would be

$$[A]_{t} = g, \qquad (4)$$

 $[A] = [P]^{T} [Q] [P] ,$

and

$$g = [P]' [Q] [y-f]$$
.
P is the (NxM) matrix with elements $\frac{\partial f_i}{\partial b_j} \Big|_{\substack{b=b \\ current}}$ and Q is the weight matrix.

The least squares estimate of t is given by

$$t = ([A]^{T} [A])^{-1} [A]^{T} g .$$
 (5)

This linear estimate of the changes needed in the parameter vector can become unstable when $([A]^{T}[A])$ is nearly singular because the inverse blows up. (Instability means elements of t become so large they lie far outside a linear region about the present b and thus are invalid estimates.) To prevent this, a constant named a Ridge Regression estimate is added to the diagonal terms of $([A]^{T}[A])$. The so-called Ridge Regression estimate of t is:

$$t_{RR} = ([A]^{T} [A] + [I]K)^{-1} [A]^{T} g .$$
 (6)

The benefit of (6) is that the inversion of $([A]^{T}[A] + [I]K)$ is stable. The value of K is varied throughout the inversion. At first the smallest value of K is found for which the estimate t_{RR} yields a new model with a better fit to the data. As the interative process nears a minimum, the value of K is decreased so as to approach the classic least squares inverse.

The weighting matrix Q is a diagonal matrix with the diagonal terms equal to the inverse of the data variance. In this way, the residual for each data point is compared with its expected error.

where

 σ is a scalar factor called the problem standard deviation.

Statistical Evaluation of a Model

A set of model parameters, b, which minimize (1) is considered a good approximation with respect to the data if

$$(\chi_F^2)_{1-\alpha} \geq (\chi_F^2)_0 \tag{7}$$

where $(\chi_F^2)_{1-\alpha}$ is the chi-square value at the $(1-\alpha)$ confidence level with F = N-M degrees of freedom. The experimental value of the chi-square is given by

$$(\chi_F^2)_o = \frac{\int_{\sigma}^{h_2}}{\sigma^2}$$

where

$$\int_{\sigma}^{\Lambda} 2 = \frac{\left[y-f\right]^{\mathsf{T}}\left[Q\right]_{\mathsf{J}=1}\left[y-f\right]}{\mathsf{N}-\mathsf{M}} = \frac{\phi\mathsf{M}\mathsf{I}\mathsf{N}}{\mathsf{N}-\mathsf{M}}$$

 $\stackrel{\Lambda}{\sigma}$ is an estimate of the true problem standard deviation. Because data errors are expressed as percent of the actual data and used as the weights in Q, σ is assumed to be 1 (Jain, 1978).

The uncertainty in the estimated model parameters is given as (Bevington, 1969)

$$\sigma b_{j}^{2} = \sigma^{2} (cov(P)_{jj}) , \qquad (8)$$

where the parameter covariance matrix, cov (P), is written as

$$\operatorname{cov}(\mathsf{P}) = \left\{ \left[\mathsf{P} \right]^{\mathsf{T}} \left[\mathsf{Q} \right]_{\alpha=1} \left[\mathsf{P} \right] \right\}^{-1} \qquad (9)$$

Equation (8) gives the parameter variance for a linear solution only. In the case of a non-linear problem, as this one, (8) can be used as an approximation in conjunction with the parameter correlations. The parameter correlations are a measure of the linear dependence between parameters, and are given by

$$CORR(b_{ij}) = \frac{cov(P)_{ij}}{cov(P)_{ij} cov(P)_{ij}}$$

If the value of $CORR(b_{ij})$ is near unity, then the parameters b_i and b_j are strongly correlated and nearly linearly dependent. In such a case the individual parameters are not well determined; rather, their ratio (if correlation coefficient is +1) or product (if correlation coefficient is -1) can be determined from the data.

If the correlations are small, then the standard deviations, given by the square roots of the diagonals of (8), are a good measure of the uncertainty of each parameter. If, however, two parameters are highly correlated, CORR $b_{ij} \approx \pm 1$, then the standard deviations will be larger than the actual uncertainties. Figure 3 illustrates this fact with a generalized slice of solution space. The two coordinate axes correspond to two parameters of the estimated layered earth model. The ellipse indicates a confidence region within which the residual sum of squares, ϕ , is expected to lie for a certain percent of the repeated experiments. This region also defines the values of the parameter ρ_2 (resistivity) and t_2 (thickness) which will give a residual sum of squares within the contour. The origin is defined by the parameter value at the final

Figure 3. Generalized slice of solution space.

solution. The tilt of the axis of the ellipse is a measure of the degree of correlation between the two parameters. If the standard deviations from (8) are taken to be the true deviation estimates, then the ellipse is enclosed by a large box whose sides are defined by the standard deviation. The box, which ignores parameters correlation, represents a much larger confidence region than the ellipse. By using the standard deviation implied by the box, one obtains a very conservative estimate of the parameter confidence interval for correlated parameters. Therefore, by considering the standard deviations in conjunction with parameter correlations, a more realistic parameter standard deviation can be arrived at, which is always less or equal to the standard deviation computed from (8).

For a further description of the inversion method and procedure, see Jain (1978).

Combined Data Interpretation

During the EM sounding survey carried out in Nevada, three orthogonal components of magnetic field were measured for each transmitter-receiver location. This provided four sounding curves: the amplitude and phase at selected frequencies for both the vertical and radial components, $|H_r|$, $|H_z|$, H_r phase and H_z phase. The tangential magnetic field would be zero over a horizontal uniform medium. The amplitude of this component can thus be used as a qualitative measure of the inhomogeneity of the ground. If each sounding curve were inverted separately, four different earth models would result. These would then have to be averaged in some way to obtain a single model. A more objective approach is to find a single model which best fits all the data simultaneously. In this approach each data point is first weighted by its standard error (defined as the standard deviation divided by the square root of the number of samples) to set its relative importance and accuracy. All data sets are then inverted simultaneously.

Survey Results

The survey line E-E' crosses Grass Valley from southeast to northwest, passing approximately 1 km northeast of Leach Hot Springs (Figure 2). The orientation of the line is approximately 45° to the strike of the local geologic structure. Sounding data were taken with the transmitter as station 3 West and receiver locations at 1, 2, 4, and 5 West.

The observed field data and their standard errors for the four soundings are tabulated in Appendix A, and are illustrated in Figures (4) through (15). The transmitter-receiver locations are indicated on each figure (e.g. T3-R4 stands for transmitter at 3 West and receiver at 4 West). The standard errors listed in Appendix A of this section, are not plotted on Figures (4) through (15) since they would not show up on the scales used.

As previously discussed, the four sets of sounding data (amplitude and phase of H_z and H_r) were simultaneously inverted to obtain an overall best-fit model. The standard errors listed in Appendix A were derived from the diagonal weighting matrix [Q].

Ordinarily, considerable effort might be needed to originate a set of initial model parameters to begin the data inversions. All existing geological and geophysical data must be considered in making a first guess. However, since this had already been done by Jain (1978), the final models obtained from his work were used as starting models in the interpretation of our data. Previous data clearly indicated a basic three-layer structure with a fairly thick and conductive middle layer overlying and underlying more resistive layers. In cases where a threelayer model resulted in poor parameter resolution, a two-layer model was used to more accurately define the depth to and resistivity of the conductive layer. As previously noted by Jain (1978) for the three-layer case, the resistivity of the bottom layer is very poorly resolved. Whether $\rho_3 = 1$ or 100 Ω m makes little difference on the other parameters, and so we use the higher value as a constant.

Figures 4 and 5 present the data for sounding T3-R1. Here the three-layer model fits the data fairly well and the model parameters are well resolved. Figures 6 and 7 present the data for sounding T3-R2 with another three-layer model fit to the data. Figures 8 and 9 represent a two-layer fit to the same data. Note that the common parameters between the two models have virtually the same values. However, the resolution of the two-layer model parameters is much better, lending increased confidence in the depth to and resistivity of the conductive target.

Figures 10 through 13 presenting data for T3-R4 show the same situation as found for T3-R2. Figures 14 and 15 are for T3-R5 and yield a three-layer model with good parameter resolution.

In general, all the models are consistent with the seeming exception of the models for T3-R2. However, ρ_2 and h_2 for T3-R2 are highly correlated, correlation coefficient = 0.99. This means that the ratio h_2/ρ_2 is all that can be determined from the inversion. Therefore a thicker, more resistive middle layer (which would keep the ratio h_2/ρ_2 constant) would also fit the data. Thus, a general model of 8-10 Ω m, 500m thick top layer above a 100 Ω m basement is consistent with all the data obtained. The models interpreted from data previously taken by Jain (1978) are shown in Figure 16 for comparison.

XBL7810-6562

Figure 4. Amplitude spectra, T3-R1.

XBL 7810-6560

Figure 5. Phase spectra, T3-Rl.

XBL 7810-6561

Figure 6. Amplitude spectra, T3-R2.

Figure 7. Phase spectra, T3-R2.

XBL 7810-6563

Figure 9. Phase spectra, T3-R2, two-layer fit.

Figure 10. Amplitude spectra, T3-R4.

Figure 11. Phase spectra, T3-R4.

Figure 12. Amplitude spectra, T3-R4, two-layer fit.

Figure 13. Phase spectra, T3-R4, two-layer fit.

Figure 14. Amplitude spectra, T3-R5.

Figure 15. Phase spectra, T3-R5.

XBL 784-8029

Figure 16. Resistivity sections along Line E-E' obtained from interpretations of 1 km and 2 km sounding data (after Jain, 1978).
APPENDIX A

TABULATION OF RESULTS

Appendix A

Т	3	6110	R	1
			10	

	Normalized Field*		Phase in Degrees**		
Frec	l. H _z	Hr		Φ_{z}	۴
0.1 0.3 0.5 1.0 3.0 5.0 10.0 30.0	1.105 \pm 0.4 1.255 \pm 0.52 1.386 \pm 0.54 1.450 \pm 0.71 1.418 \pm 0.21 1.138 \pm 0.12 0.942 \pm 0.32 0.648 \pm 0.15 0.377 \pm 1.5	0.220±7.4 0.548±3.4 0.733±3.6 0.904±2.8 0.930±0.66 1.095±0.30 1.092±0.17 0.989±0.08 0.740±0.48		183.83 ± 0.18 185.91 ± 0.29 182.26 ± 0.27 176.70 ± 0.26 170.34 ± 0.04 148.50 ± 0.19 136.17 ± 0.17 117.80 ± 0.54 95.30 ± 1.40	275.53 ± 3.00 245.82 ± 2.60 $235,02\pm1.98$ 224.78 ± 4.60 209.96 ± 0.23 185.71 ± 0.12 174.00 ± 0.65 161.77 ± 0.05 145.16 ± 0.18
			T3-R2		
$\begin{array}{c} 0.1 \\ 0.2 \\ 0.3 \\ 0.6 \\ 1.0 \\ 2.0 \\ 3.0 \\ 6.0 \\ 10.0 \\ 30.0 \\ 100.0 \\ 200.0 \end{array}$	$\begin{array}{c} 1.085\pm0.07\\ 1.114\pm0.07\\ 1.152\pm0.12\\ 1.232\pm0.07\\ 1.281\pm0.01\\ 1.350\pm0.02\\ 1.380\pm0.02\\ 1.401\pm0.27\\ 1.354\pm0.16\\ 0.996\pm0.26\\ 0.469\pm0.33\\ 0.248\pm2.2 \end{array}$	$\begin{array}{c} 0.044 \pm 1.0\\ 0.074 \pm 1.56\\ 0.114 \pm 0.78\\ 0.197 \pm 1.1\\ 0.287 \pm 0.30\\ 0.442 \pm 0.28\\ 0.559 \pm 0.12\\ 0.811 \pm 1.1\\ 1.016 \pm 0.14\\ 1.250 \pm 0.54\\ 1.16 \pm 0.21\\ 1.019 \pm 1.30\\ \end{array}$		181.95 ± 0.03 183.67 ± 0.02 184.82 ± 0.09 185.25 ± 0.05 184.31 ± 0.01 180.92 ± 0.01 176.88 ± 0.02 169.83 ± 0.18 160.44 ± 0.02 130.17 ± 0.20 94.74 ± 0.39 73.60 ± 2.10	$\begin{array}{c} 286.60 \pm 1.27\\ 271.70 \pm 1.26\\ 262.17 \pm 0.56\\ 251.90 \pm 0.62\\ 243.12 \pm 0.14\\ 233.71 \pm 0.15\\ 228.75 \pm 0.10\\ 219.26 \pm 0.58\\ 207.44 \pm 0.01\\ 182.27 \pm 0.06\\ 159.00 \pm 0.11\\ 151.42 \pm 1.0\\ \end{array}$
	å		T3-R4		
0.1 0.3 1.0 3.0 10.0 30.0 100.0	$\begin{array}{c} 1.098 \pm 0.08 \\ 1.123 \pm 0.16 \\ 1.271 \pm 0.02 \\ 1.341 \pm 0.03 \\ 1.317 \pm 0.007 \\ 0.966 \pm 0.55 \\ 0.507 \pm 0.31 \end{array}$	0.047±4.4 0.117±1.37 0.302±0.08 0.546±0.06 0.991±0.03 1.179±0.12 0.632±0.54		$182.16\pm0.08184.66\pm0.03183.52\pm0.01177.27\pm0.01160.42\pm0.01131.55\pm0.16107.89\pm0.28$	254.25±2.2 251.25±0.75 233.95±0.38 177.27±0.03 160.42±0.01 153.98±0.04 59.48±0.17
			T3-R5		
0.1 0.3 1.0 3.0 10.0 30.0	$\begin{array}{c} 1.101 \pm 0.31 \\ 1.186 \pm 0.42 \\ 1.257 \pm 0.09 \\ 1.105 \pm 0.23 \\ 0.596 \pm 0.38 \\ 0.131 \pm 14.4 \end{array}$	0.203±3.0 0.534±3.0 0.923±0.49 1.052±0.61 1.007±0.27 0.708±1.36		182.62 ± 0.15 183.01 ± 0.29 171.24 ± 0.05 154.62 ± 0.14 120.18 ± 0.18 90.04 ± 20.81	258.47±3.9 243.70±2.0 206.69±0.24 185.13±0.19 158.57±0.15 137.35±0.64
	* Errors in percent	ages	**	Errors in degr	ees

REFERENCES

REFERENCES

- Bevington, P.R., 1969, Data reduction and error analysis for the physical sciences: McGraw Hill Book Company, Inc., New York.
- Beyer, J.H., 1977, Telluric and d.c. resistivity techniques applied to the geophysical investigation of Basin and Range Geothermal Systems: Ph.D. thesis, University of California, Berkeley.
- Beyer, J.H., Dey, A., Liaw, A., Majer, E., McEvilly, T.V., Morrison, H.F., and Wollenberg, H., 1976, Preliminary open file report: geological and geophysical studies in Grass Valley, Nevada, LBL-5262.
- Beyer, J.H., Morrison, H.F., and Dey, A., 1975, Electrical exploration of geothermal systems in Basin and Range Valleys of Nevada; Proceedings: Second U.N. Symposium on the Development and Use of Geothermal Resources, May 1975, pp. 889-894.
- Bhattacharyya, B.K., 19755, Propagation of transient electromagnetic waves in a conducting medium: Geophysics, v. 20, no. 4, pp. 959-961.
- Dey, A., and Morrison, H.F., 1973, Electromagnetic coupling in frequency and time-domain induced polarization surveys over multilayered earth; Geophysics, v. 38, no. 2.
- Frischknecht, F.C., 1967, Fields about an oscillating magnetic dipole over a two-layer earth, and application to ground and airborne electromagnetic surveys: Quarterly, Colorado School of Mines, v. 62, no. 1.
- Ghosh, M.K., and Hallof, G., 1973, Loop-loop EM depth sounding method for delineating geothermal and permafrost zones: Abstract: Geophysics, c. 38, p. 1201.
- Glenn, W.E., Ryu, J., Ward, S.H., Peeples, J.J., and Phillips, R.J., 1973, The inversion of vertical magnetic dipole sounding data: Geophysics, v. 38, pp. 1109-1129.
- Glenn, W.E., and Ward, S.H., 1976, Statistical evaluation of electrical sounding methods. Part I: Experiment design: Geophysics, v. 41, pp. 1207-1221.
- Harthill, N., 1976, Time domain electromagnetic soundings: IEEE Trans. on Geoscience Electronics, v. GE-14, pp. 256-260.
- Inman, J.R., 1975, Resistivity inversion with Ridge regression: Geophysics, v. 40, pp. 798-817.
- Inman, J.R., Ryu, J., and Ward, S.H., 1973, Resistivity inversion: Geophysics, v. 38, pp. 1088-1108.

REFERENCES (continued)

- Jackson, D.B., and Keller, G.V., 1972, An electromagnetic sounding survey of the summit of Kilauea Volcano, Hawaii: Journ. of Geophys. Res., v. 77, pp. 4957-4967.
- Jain, B.K., 1978, A low frequency electromagnetic prospecting system: Ph.D. thesis, University of California, Berkeley, LBL-7042, 128 pp.
- Jain, B.K., and Morrison, H.F., 1976, Progress report, inductive resistivity survey in Grass Valley, Nevada: Lawrence Berkeley Laboratory, UCID-3997, 46 pp.
- Jupp, D.L.B., and Vozoff, K., 1975, Stable iterative methods for the inversion of geophysical data: Geophys. J.R. Astr. Soc., v. 42, pp. 957-976.
- Keller, G.V., 1970, Induction method in prospecting for hot water: Geothermics -Special Issue 2.
- Keller, G.V., and Rapolla, A., 1976, A comparison of two electromagnetic probing techniques: IEEE Trans. on Geoscience Electronics, v. GE-14, pp. 250-256.
- Morrison, H.F., Hoversten, M., Riveros, C., and Oppliger, G., 1978, A low frequency electromagnetic prospecting system for geothermal exploration: Lawrence Berkeley Laboratory Report (in press).
- Parker, R.L., 1970, The inverse problem of electrical conductivity in the mantle: Geophys. J.R. Astr. Soc., v. 22, pp. 121-138.
- Ryu, J., Morrison, H.F., and Ward, S.H., 1970, Electromagnetic fields about a loop source of current: Geophysics, v. 35, pp. 862-896.
- Smith, N.J., 1963, Geophysical activity in 1962: Geophysics, v. 28, no. 6, pp. 1048-1071.
- Vanyan, L.L., 1967, Electromagnetic depth sounding: Consultants Bureau.
- Wait, J.R., 1951, A conducting sphere in a time varying magnetic field: Geophysics, v. 16, no. 5, pp. 666-672.
- Ward, S.H., 1977, A report on 'Workshop on Electrical Methods in Geothermal Exploration': Geophysics, v. 42, pp. 664-666.
- Ward, S.H., 1978, Program review: resource evaluation, reservoir confirmation, and exploration technology: University of Utah, Depart. of Geology and Geophysics, Technical Report 78-1701, b.5.1.
- Wu, F.T., 1968, The inverse problem of magnetotelluric sounding: Geophyics, v. 35, pp. 972-979.

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

说

TECHNICAL INFORMATION DEPARTMENT LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720