Skip to main content
Download PDF
- Main
Majorizing Logit Loss Functions for the Multidimensional Representation of Categorical Data
Abstract
The data we study are measurements of n objects on each of m variables. This corresponds with the spreadsheet format in many software packages and with the data-frame in S/R. In our setup all data are categorical, which means each variable maps the observations into a finite number of categories. Categories can be a finite subset of the reals, a finite ordered set, the set {0,1}, or just an arbitrary finite set.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%