Skip to main content
eScholarship
Open Access Publications from the University of California

Plasma Proteome Signature of Sepsis: a Functionally Connected Protein Network.

  • Author(s): Pimienta, Genaro
  • Heithoff, Douglas M
  • Rosa-Campos, Alexandre
  • Tran, Minerva
  • Esko, Jeffrey D
  • Mahan, Michael J
  • Marth, Jamey D
  • Smith, Jeffrey W
  • et al.

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447370/
No data is associated with this publication.
Abstract

Sepsis is an extreme host response to infection that leads to loss of organ function and cardiovascular integrity. Mortality from sepsis is on the rise. Despite more than three decades of research and clinical trials, specific diagnostic and therapeutic strategies for sepsis are still absent. The use of LFQ- and TMT-based quantitative proteomics is reported here to study the plasma proteome in five mouse models of sepsis. A knowledge-based interpretation of the data reveals a protein network with extensive connectivity through documented functional or physical interactions. The individual proteins in the network all have a documented role in sepsis and are known to be extracellular. The changes in protein abundance observed in the mouse models of sepsis have for the most part the same directionality (increased or decreased abundance) as reported in the literature for human sepsis. This network has been named the Plasma Proteome Signature of Sepsis (PPSS). The PPSS is a quantifiable molecular readout that can supplant the current symptom-based approach used to diagnose sepsis. This type of molecular interpretation of sepsis, its progression, and its response to therapeutic intervention are an important step in advancing our understanding of sepsis, and for discovering and evaluating new therapeutic strategies.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item