Skip to main content
Download PDF
- Main
Sensitivity enhancement for detection of hyperpolarized 13C MRI probes with 1H spin coupling introduced by enzymatic transformation in vivo
Published Web Location
https://doi.org/10.1002/mrm.27000Abstract
Purpose
Although 1 H spin coupling is generally avoided in probes for hyperpolarized (HP) 13 C MRI, enzymatic transformations of biological interest can introduce large 13 C-1 H couplings in vivo. The purpose of this study was to develop and investigate the application of 1 H decoupling for enhancing the sensitivity for detection of affected HP 13 C metabolic products.Methods
A standalone 1 H decoupler system and custom concentric 13 C/1 H paddle coil setup were integrated with a clinical 3T MRI scanner for in vivo 13 C MR studies using HP [2-13 C]dihydroxyacetone, a novel sensor of hepatic energy status. Major 13 C-1 H coupling JCH = ∼150 Hz) is introduced after adenosine triphosphate-dependent enzymatic transformation of HP [2-13 C]dihydroxyacetone to [2-13 C]glycerol-3-phosphate in vivo. Application of WALTZ-16 1 H decoupling for elimination of large 13 C-1 H couplings was first tested in thermally polarized glycerol phantoms and then for in vivo HP MR studies in three rats, scanned both with and without decoupling.Results
As configured, 1 H-decoupled 13 C MR of thermally polarized glycerol and the HP metabolic product [2-13 C]glycerol-3-phosphate was achieved at forward power of approximately 15 W. High-quality 3-s dynamic in vivo HP 13 C MR scans were acquired with decoupling duty cycle of 5%. Application of 1 H decoupling resulted in sensitivity enhancement of 1.7-fold for detection of metabolic conversion of [2-13 C]dihydroxyacetone to HP [2-13 C]glycerol-3-phosphate in vivo.Conclusions
Application of 1 H decoupling provides significant sensitivity enhancement for detection of HP 13 C metabolic products with large 1 H spin couplings, and is therefore expected to be useful for preclinical and potentially clinical HP 13 C MR studies. Magn Reson Med 80:36-41, 2018. © 2017 International Society for Magnetic Resonance in Medicine.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%