Skip to main content
eScholarship
Open Access Publications from the University of California

Using singlet molecular oxygen to probe the solute and temperature dependence of liquid-like regions in/on ice

  • Author(s): Bower, JP
  • Anastasio, C
  • et al.

Published Web Location

https://doi.org/10.1021/jp404071y
Abstract

Liquid-like regions (LLRs) are found at the surfaces and grain boundaries of ice and as inclusions within ice. These regions contain most of the solutes in ice and can be (photo)chemically active hotspots in natural snow and ice systems. If we assume all solutes partition into LLRs as a solution freezes, freezing-point depression predicts that the concentration of a solute in LLRs is higher than its concentration in the prefrozen (or melted) solution by the freeze-concentration factor (F). Here we use singlet molecular oxygen production to explore the effects of total solute concentration ([TS]) and temperature on experimentally determined values of F. For ice above its eutectic temperature, measured values of F agree well with freezing-point depression when [TS] is above ∼1 mmol/kg; at lower [TS] values, measurements of F are lower than predicted from freezing-point depression. For ice below its eutectic temperature, the influence of freezing-point depression on F is damped; the extreme case is with Na2SO4as the solute, where F shows essentially no agreement with freezing-point depression. In contrast, for ice containing 3 mmol/kg NaCl, measured values of F agree well with freezing-point depression over a range of temperatures, including below the eutectic. Our experiments also reveal that the photon flux in LLRs increases in the presence of salts, which has implications for ice photochemistry in the lab and, perhaps, in the environment. © 2013 American Chemical Society.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View