- Main
Nonmetal-to-Metal Transition of Magnesia Supported Au Clusters Affects the Ultrafast Dissociation Dynamics of Adsorbed CH3Br Molecules
Abstract
The detection of intermediate species and the correlation of their ultrafast dynamics with the morphology and electronic structure of a surface is crucial to fully understand and control heterogeneous photoinduced and photocatalytic reactions. In this work, the ultrafast photodissociation dynamics of CH3Br molecules adsorbed on variable-size Au clusters on MgO/Mo(100) is investigated by monitoring the CH3+ transient evolution using a pump-probe technique in conjunction with surface mass spectrometry. Furthermore, extreme-UV photoemission spectroscopy in combination with theoretical calculations is employed to study the electronic structure of the Au clusters on MgO/Mo(100). Changes in the ultrafast dynamics of the CH3+ fragment are correlated with the electronic structure of Au as it evolves from monomers to small nonmetallic clusters to larger nanoparticles with a metallic character. This work provides a new avenue to a detailed understanding of how surface-photoinduced chemical reactions are influenced by the composition and electronic structure of the surface.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-