Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Realistic boundary conditions in SimVascular through inlet catheter modeling

Abstract

Objective

This study aims at developing a pipeline that provides the capability to include the catheter effect in the computational fluid dynamics (CFD) simulations of the cardiovascular system and other human vascular flows carried out with the open-source software SimVascular. This tool is particularly useful for CFD simulation of interventional radiology procedures such as tumor embolization where estimation of a therapeutic agent distribution is of interest.

Results

A pipeline is developed that generates boundary condition files which can be used in SimVascular CFD simulations. The boundary condition files are modified such that they simulate the effect of catheter presence on the flow field downstream of the inlet. Using this pipeline, the catheter flow, velocity profile, radius, wall thickness, and deviation from the vessel center can be defined. Since our method relies on the manipulation of the boundary condition that is imposed on the inlet, it is sensitive to the mesh density. The finer the mesh is (especially around the catheter wall), the more accurate the velocity estimations are. In this study, we also utilized this pipeline to qualitatively investigate the effect of catheter presence on the flow field in a truncated right hepatic arterial tree of a liver cancer patient.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View