Skip to main content
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

A forebrain-retrorubral pathway involved in male sex behavior is GABAergic and activated with mating in gerbils


The ventral bed nuclei of the stria terminalis (BST) and medial preoptic nucleus (MPN) of gerbils contain cells that regulate male sex behavior via a largely uncrossed pathway to the retrorubral field (RRF). Our goal was to learn more about cells at the pathway source and target. To determine if the pathway uses GABA as its transmitter, we used immunocytochemistry (ICC) to study glutamic acid decarboxlyase(67) (GAD(67)) colocalization with fluoro-gold (FG) in the ventral BST and MPN after applying FG to the RRF. To determine if the pathway is activated with mating, we studied FG-Fos colocalization in the ventral BST of recently mated males. The ventral BST expresses Fos with mating and is the major pathway source. To determine to what extent other GABAergic cells in the ventral BST are activated with mating, we studied Fos colocalization with GAD(67) mRNA visualized by in situ hybridization (ISH). We also looked for GAD(67) mRNA in RRF cells. Almost all ventral BST and MPNm cells projecting to the RRF (95-97%) and most ventral BST cells activated with mating (89%), were GABAergic. GABAergic cells were also seen in the RRF. RRF-projecting cells represented 37% of ventral BST cells activated with mating. Their activation may reflect arousal and anticipation of sexual reward. Among ventral BST cells that project to the RRF, 14% were activated with mating, consistent with how much of this pathway is needed for mating. The activated GABAergic cells that do not project to the RRF may release GABA locally and inhibit ejaculation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View